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Abstract—Deep neural networks are vulnerable to adversarial attacks either by examples with indistinguishable perturbations which

produce incorrect predictions, or by examples with noticeable transformations that are still predicted as the original label. The latter

case is known as the Type I attack which, however, has achieved limited attention in literature. We advocate that the vulnerability comes

from the ambiguous distributions among different classes in the resultant feature space of the model, which is saying that the examples

with different appearances may present similar features. Inspired by this, we propose a novel Type I attack method called generative

adversarial attack (GAA). Specifically, GAA aims at exploiting the distribution mapping from the source domain of multiple classes to the

target domain of a single class by using generative adversarial networks. A novel loss and a U-net architecture with latent modification

are elaborated to ensure the stable transformation between the two domains. In this way, the generated adversarial examples have

similar appearances with examples of the target domain, yet obtaining the original prediction by the model being attacked. Extensive

experiments on multiple benchmarks demonstrate that the proposed method generates adversarial images that are more visually

similar to the target images than the competitors, and the state-of-the-art performance is achieved.

Index Terms—Type I attack, resultant feature space, similar features, adversarial attack, generative adversarial network

Ç

1 INTRODUCTION

MOST of existing deep neural networks (DNNs) have
proven to be vulnerable to attacks by adversarial

examples [1], [2]. This poses a great threat to the working
conditions of the DNN-based real applications, such as
autonomous driving [3], [4], object intrusion detection sys-
tems [5], [6] and face recognition [7], [8]. Hence, the research
on the robustness of DNNs, including adversarial attacking
and adversarial training, has recently attracted a great atten-
tion from the community. As for the adversarial attack,which
can be roughly classified into Type I attack and Type II
attack, it is aims at finding amodified example that can fool a
target model with or without a defense mechanism. Type II
attack tries to disturb the input data with an imperceptible
perturbation, which can cause a misclassification by the

attacked model [9], [10]. Currently, most of existing attack
methods belong to Type II. An alternative attack manner is
called Type I attack [11], however, which is seldomly
focused in literatures. This attack targets at making signifi-
cant changes to the input but the result is predicted as the
original label by the attacked model. This is very dangerous
in some scenario. For example, there are many images and
videos on social networks, and the cost of manual review is
too high and inefficient. Hence, various platforms will use
deep learning models to detect and filter illegal images and
videos. However, the platform’s detection system will fail if
someone uses a Type I attack to convert ordinary videos and
images into unlawful content, which results in severely neg-
ative consequences. Existing research [12] shows that similar
to the Type II attack, the Type I attack can also be used to
exploit the weakness of the deepmodels.

Mathematically, assume that we have an example x with
the ground-truth label as y and a to-be-attacked model f
that makes a correct prediction on x, i.e., y ¼ fðxÞ. In the
Type II attack, the adversarial example x0 is generated by
adding an imperceptible perturbation to x, resulting in an
incorrected prediction by f , i.e., y 6¼ fðx0Þ. Regarding the
Type I attack, we use x to generate the adversarial example
x0 which, however, exhibits a totally different appearance to
x and has a complete different label y0 6¼ y. A successful
attack makes the model f unconscious of the changes of the
input category, i.e., y ¼ fðx0Þ. Hence, the Type I attack can
be viewed as a task of input transformation which cannot
be easily solved by, for example, adding noises to the input.

The above analyses inform us that the transformation
from x to x0 is indeed equivalent to the transformation
between the distributions of two classes, that is, mapping
the data distribution that x follows to the data distribution
that x0 follows while keeping the features by f consistent.
The possibility of such a transformation relies on the ambi-
guity of the model f on the examples of these two classes.
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Specifically, if the feature distributions of the two classes are
overlapped with each other, the model will have low confi-
dence on the examples located in the overlapped region and
then, it is possible to transform the appearance of the exam-
ple while keeping the feature unchanged, as shown in
Fig. 1a. On the other hand, if the model well characterizes
the decision boundaries of the two classes (for example,
there is a large margin between the boundaries), it will be
very difficult to make a transformation between them. We
regard the Type I attack as exploiting the inter-class diver-
sity property of the model, and as a counterpart, the Type II
attack is exploiting the intra-class aggregation property of
the model. Hence, during attack, we are reasonably moti-
vated to employ generative functions to implement the dis-
tribution transformation.

Furthermore, consider that the model f may have
enhanced robustness owing to robust learning or some
defense mechanisms, which means that the model has low
ambiguity on different classes. In this case, the transforma-
tion is limited because the overlapped region is suppressed,
as shown in Fig. 1b. To be clear, by involving robust learning,
the resultant model exhibits improved discriminating ability
between difference classes. Hence, the overlap between clas-
ses is suppressed and it becomes more difficult to transform
a clean example to an adversarial example. Here, we advo-
cate that it is encouraged to involve some randomness in the
transformation process such that the generated examples
exhibit more details relating the target distribution (i.e., x0).
This is reasonable because when the overlapped region is
limited, the information that is transformable is also con-
strained. To enrich the information, randomness is a good
choice for modern generative models, which has already
been verified in the task of face generation [13].

In this paper, we follow the above ideas and propose a
novel Type I attack method, called generative adversarial
attack (GAA). Specifically, we employ a generative adver-
sarial network (GAN) architecture to learn the transforma-
tion from the original distribution to a pre-defined target
distribution. To ensure the attack ability of the generated
example, we employ the auxiliary classifier GAN (AC-

GAN) loss to encourage the label of the generated data to be
the same as the original data, which is expected by the
attack objective. Simultaneously, a feature similarity con-
straint is imposed to keep feature consistency. Moreover,
randomness is introduced in the generator to enrich the
transformation and to diversify the generated examples. We
conduct a series of examples on multiple public datasets,
which demonstrate the superiority of the proposed model
by comparing with the existing state-of-the-arts. Our contri-
butions can be summarized as follows:

1) We propose a novel Type I attack method called gen-
erative adversarial attack (GAA). Specifically, we
model the generation of adversarial examples as a
discriminative inference process, while the well-
trained generative model can be used to generate
adversarial example very efficiently. This is different
from previous works, where the adversarial example
is generally generated via an optimization process
which is time and resource-consuming. Notably,
GAA is 60 times faster than the previous optimiza-
tion-based method.

2) To ensure a smooth translation process from the origi-
nal image to its counterpart adversarial example and
to enrich the generated information in the target class,
we develop an encoder-decoder-based generatorG by
involving a random noise in the hidden feature space.
This allows to generate visually pleasing adversarial
examples. At the same time, GAA improves the black-
box attack capability by imposing a soft constraint on
the encoded features of intra classes.

3) Compared with the existing Type I attacks, the
experiments indicate that the proposed model pro-
duces the adversarial examples with more natural-
ness and more features of the original image. The
attack success rates on normal models and robust
models are largely improved.

The rest of this paper is organized as follows. In Section 2,
we briefly analyze the exiting adversarial attack methods
and the defense methods. Section 3 presents the problem
definition. The techniques of the Type-I generative adver-
sarial attack are given in Section 4. In Section 5, we discuss
the experiments, including the basic settings, the compared
methods, and the experimental results. Section 6 draws the
conclusions of this paper.

2 RELATED WORK

Deep Neural Networks have a powerful ability of modeling
complex problems and achieve superior performance,
hence being widely used in real applications. Due to the
unexplainability and the data bias, most of the deep models
have been confirmed to be vulnerable to adversarial exam-
ples in computer vision tasks [14]. Advanced techniques for
generating adversarial examples could produce a high suc-
cess rates in attacking while remaining imperceptible per-
turbations in the examples [9], [15]. To perform attack in
real world, the physical adversarial attack is also
researched [15], [16], [17], especially in the topics of object
detection [18], [19], [20], semantic segmentation [21], [22],
[23], and natural language processing [24], [25], [26]. Here,

Fig. 1. Illustration of the Type I attack on the normal and robust models.
The normal model indicates that there is no intended robust consider-
ation during learning while the robust model is optimized by robust learn-
ing or adversarial learning. The overlapped green regions (where the
model is ambiguous) are different for the normal model (the region is
large) and the robust model (the region is small). For either model, if the
two classes (i.e. x and x0 have an overlapped region (xt), it is possible to
transform the examples of one class (x) to the examples located in this
region. Hence, we advocate that the adversarial examples are located in
this region, and we can transform x to xt as indicated by the arrows.
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we focus on the adversarial attack on image classification,
while is briefly reviewed in this section.

2.1 Type II Attack

Assume a classifier fðxÞ : x 2 X�!y 2 Y , which outputs the
label y as the prediction of an input x. The Type II attack
aims to find a small perturbation d which is added to x,
such that the generated input misleads the classifier output
fðxþ dÞ 6¼ y. The perturbation d is usually constrained by
Lpðp¼1;2...1Þ norm, i.e., kdkp4�. Then, the constrained optimi-
zation problem can be written as:

argmaxJðxþ d; yÞ kdk4�; (1)

where J is, for example, the cross-entropy loss.
Adversarial attack is an active area in recent years that

has witnessed extensive publications of advanced techni-
ques. As mentioned previously, the research community
consistently express interests on the Type II attack and have
published a series of advanced algorithms, including the
gradient-based methods [9], [15], [27], [28],such a fast gradi-
ent sign method (FGSM) [29], FGSM is a simple adversarial
attack method, and it attacks the picture by maximizing the
loss function J .Subsequently, it evolved into iterative
FGSM [15], and can be formulated as:

x0
0 ¼ x;

x0
tþ1 ¼ x0

t þ a � signð5xJðu; x; yÞÞ; (2)

where the J is the loss function, x and y represent the input
image and the true label, u represents the network parame-
ters, a is the step size, and signðÞ is the sign function. As a
seminal work, momentum iterative FGSM (MI-FGSM) [28]
is proposed,which intergrates the momentum term into the
iterative process for attacks to ensure the noise adding
direction more smooth:

giþ1 ¼ m�gi þ 5xJðx0i; yÞ
k 5x Jðx0

i; yÞk1
;

x0
iþ1 ¼ Clipx;�fx0

i þ a�signðgiþ1Þg; (3)

where m is the decay factor of the momentum term, and the
Clip function clips the input values to a specified permissi-
ble range i.e ½x� �; xþ �� and [0,1] for images.Compared
with classical FGSM, MI-FGSM is able to craft a better
adverarial examples.

As a optimization-based method, C & W [30] first treats
adversarial examples as variables, then it try to optimize
and diminish the discrepancy between adversarial exam-
ples and clean examples, as well as increase the probability
of misclassification. It can be expressed as:

minDðx; xþ dÞ þ c � fðxþ dÞ; (4)

where the d is the disturbance,D is the distance between the
clean image and the adversarial example, f is the classifica-
tion model, and c is the hyperparameter. And the local-
region attack methods [31], [32], for example, One Pixel
Attack [32], an extreme adversarial attack method, can
attack the classification model by only changing the value
of one pixel in the image.

2.2 Type I Attack

Unlike the Type II attack, the Type I attack tries to make a
significant change to clean image x, but still fools the classi-
fier to produce the original label. Mathematically, this pro-
cess can be described as

x0 ¼ GðxÞ;
f1ðx0Þ ¼ f1ðxÞ;
f2ðx0Þ 6¼ f2ðxÞ; (5)

where f1 is the classifier to be attacked while f2 is the
attacker, which could be an oracle classifier, e.g., a human
eyes.

However, The Type I attack has received very limited
attention. For example, [11] proposed that the existing deep
models were vulnerable to both Type I and Type II
attacks. [33] explained the relationship between the two
types of attacks, and provided a supervised variational
auto-encoder (SVAE) model. Based on the original Varia-
tional Auto-encoder (VAE) [34], this method proposed a
fake latent variable that followed the standard Gaussian dis-
tribution [35]. The true and fake latent variables were distin-
guished by using a discriminator such that the model was
sensitive in generating normal examples and adversarial
examples. Then, the fake latent variable helped the pertur-
bation generation to be controllable. It can be expressed as:

J ¼ �KL½qðzjxÞjjpðzÞ� þ Ez�qðzjxÞ½logðpðyjzÞÞ�
þ Ez�qðzjxÞ½logðpðxjzÞÞ�; (6)

where the KL is Kullback-Leibler, qðzÞ is an arbitrary distri-
bution in hidden space and qðzjxÞ=Nðmðx : uencÞ; sðx : uencÞÞ
is variance,and uenc represents the encoder.

Both types of attack try to analyze the imperfect charac-
terization of data distribution by the to-be-attacked model.
The difference says that the Type II attack focuses on the
improper intra-class aggregation and finds the examples
that do not follow the distribution of a certain class, through
different manners. Instead, the Type I attack is interested in
the unpleasing inter-class diversity and generates the exam-
ples that may simultaneously follow the distribution of two
classes, thus confusing the model. The proposed method is
based on this understanding and tries to exploit the ambigu-
ity of the model to different classes, resulting in a novel gen-
erative model based on the generative adversarial network.
In this paper, we design a generative adversarial attack
model (GAA), which is the supervised extension from the
original Generative Adversarial Network (GAN). The gen-
erator tries to transform the clean image to its correspond-
ing adversarial example by editing the hidden feature space
based on the original example.

The generator try to transform the clean image to its cor-
responding adversarial example by editing the hidden fea-
ture space based on the original example.

2.3 Defend Against Adversarial Examples

The vulnerability of neural networks poses a serious secu-
rity problem for applying deep neural networks in real
applications. Recently, many methods have been proposed
to defend against adversarial examples. [9], [36] proposed
to inject adversarial examples into the training data to
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increase the network robustness. Tramer et al. [37] pointed
out that such adversarially trained models are still vulnera-
ble to new adversarial examples, and proposed an ensemble
adversarial training scheme, which augmented the training
data with the examples transferred from other models. [38],
[39] applied random transformation to the model inputs at
inference time to mitigate the adversarial effects. Dhillon
et al. [40] pruned a random subset of activations according
to their magnitude to enhance network robustness. Prakash
et al. [41] proposed a framework which combined pixel
deflection with soft wavelet denoising to defend against
adversarial examples. [42], [43], [44] leveraged generative
models to purify the adversarial images such that the exam-
ples could follow the distribution of the clean images. Bin
Liang et al. [45] considered the perturbation to images as a
kind of noise and introduced two classic image processing
techniques, including scalar quantization and smoothing
spatial filter, to reduce the attack effect of adversarial
examples.

These defense methods are against the Type II attack,
whereas no defense methods are proposed for the Type I
attack. Hence, we will employ these Type II defense meth-
ods to test the performance of defending the Type I attack
in Section 5.6.

2.4 GAN for Adversarial Attacks and Defenses

There are already many GAN-based methods for Type II
attack. For example, Mangla et al. [46] proposed AdvGAN+
+ which used the hidden layer vector in the classifier as the
input of GAN to generate adversarial examples. This
method contained the target model M, the feature extractor
F, the generator G, and the discriminator D. The clean image
was processed by F to obtain the feature vectors which were
used as the prior information. The features and the noise
vector z were cascaded and input to G to generate adversar-
ial examples. Natural GAN [47] was an innovative method
based on the WGAN framework, which focused on finding
the hidden vector of the adversarial example in the low-
dimensional hidden feature space such that the generated
adversarial example was natural to human recognition.
This method contained two stages, where the first stage
established a correspondence between the sample space
and the hidden feature space, while the second stage
searched for the hidden representation of the expected
adversarial examples. Liu et al. [48] proposed RobGAN
which introduced adversarial examples in the training of
GAN and strengthened the discriminating ability of the dis-
criminator D. This method learnt the adversarial factors to
improve the quality of the generated adversarial examples.

Regarding adversarial defense, there have already been
many GAN-based methods. Jin et al. [49] considered that
the imperceptible disturbance caused the misclassification
problem and proposed an APE-GAN algorithm to eliminate
the adversarial disturbance from the input image. The
authors used WGAN to reconstruct the adversarial image
being similar to the original image. Similar to APE-GAN,
Samangouei et al. [50] proposed Defense-GAN which
employed WGAN to reconstruct the adversarial examples
for defense. The difference of these two methods on the
training process were that APE-GAN input the clean images

and the adversarial samples into the discriminator and the
generator for training, while Defense-GAN used random
noise instead of the adversarial examples.

3 PROBLEM DEFINITION

Given a clean image x with the ground-truth label y, our
task is to synthesize an adversarial example x0 with the ora-
cle-determined label yt 6¼ y, while the attacked model f pre-
dicts x0 as y ¼ fðx0Þ. Let xt denote the sample that has the
same label yt as x0. The transformation function from x to x0

is denoted as x0 ¼ Gðx; uÞ, where u is the parameter of the
transformation. Assume that the all the examples including
ðx; yÞ, ðx0; ytÞ, and ðxt; ytÞ follow the distribution Po which is
determined by an oracle classifier, e.g. human. Then, our
objective is

minu log ðPoðx0jy; uÞÞ � log ðPoðx0jyt; uÞÞ
s:t: fðxÞ ¼ fðx0Þ: (7)

The above problem informs that the generated adversarial
example x0 is different to those examples belonging to the
class y, but is highly similar to the examples belong to yt. As
expected, the examples of the two classes exhibit noticeable
differences on their appearances. By keeping the prediction
of f on x and x0 consistent, a successful Type I attack is
achieved.

Based on the above formulation, the minimization is
implemented by our proposed generative adversarial attack
method which is detailed in the following.

4 GENERATIVE ADVERSARIAL ATTACK

In this section, we introduce the framework and the training
details of the proposed GAA.

4.1 GAA Structure and Loss Function

The proposed generative adversarial attack (GAA) is com-
posed of three important models, i.e., a generator network
G, a discriminator network D, and a to-be-attacked model f
which is termed as the function model. The whole architec-
ture is illustrated in Fig. 2. The generator and the discrimi-
nator compose of a generative adversarial network, which
optimizes the transformation from the original image x to
the images in the target domain. During the transformation
process, we note that the label of the generated example is
important for generating class-related image details. Hence,
we build up the training loss based on the AC-GAN
loss [51]. Mathematically, the loss function is:

LGAN ¼ min
G

max
D

V ðD;GÞ
¼ Ext�PdataðxtÞ½logDðxtÞ�
þ EðyÞ�Pdataðx;zÞ½log ð1�DðGðyÞÞÞ� þ �LC; (8)

where the y comes from the original image x and Gaussian
noise z, and xt is the target image, generator computes as
x0 ¼ GðyÞ, the discriminator classifies the example xt of the
yt-th class as real and the generated example x0 as fake, and
� is a hyper-parameter that balances the influence of the cat-
egory loss LC :
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LC ¼ E½logP ðc ¼ ytjxtÞ� þ E½logP ðc ¼ yjx0Þ�; (9)

where the discriminator forces the label of the generated
sample to be the same as the target example xt. Eq. (8) can
be decomposed into:

max
D

V ðD;GÞ ¼ Ext�PdataðxtÞ½logDðxtÞ�
þ EðyÞ�Pdataðx;zÞ½log ð1�DðGðyÞÞÞ� þ LC (10)

min
G

V ðD;GÞ ¼ EðyÞ�Pdataðx;zÞ½log ð1�DðGðyÞÞÞ� þ LC (11)

where needs to maximize D. For the true distribution xt,
DðxtÞ should be close to 1, and for the generated distribu-
tion x0, Dðx0Þ should be close to 0. G should be minimized,
generating samples x0 can fool D, and making Dðx0Þ close to
1. To simplify the transformation process and generate
more vivid details, we propose an operation based on the
residual learning strategy. As seen in Fig. 3, the generated
example x0 is computed as

x0 ¼ Gðx; zÞ: (12)

We need to convert from x to x0, x0 and x have a huge gap,
and x0 is the same category as the target image xt, while still be
misleading f classifies x category. The conversion process of
this attack is fundamentally different from the Type II attack.
At the same time, this is much more difficult than Type II

attacks. The difference states that on one hand, we do not con-
strain the perturbation size within a predefined threshold and
on the other hand, we restrict the resultant label of x0 to be y.
With this understanding, we could view that the Type I attack
and the Type II attack are coupled attacks on different classes.

In the implementation of the generator G, we employ a
U-net architecture composed of an encoder and a decoder.
The encoder is fully convolutional while the decoder is a
deconvolutional neural network. By simply using the
encoder-decoder model, we encounter a problem that the
synthesized images are noisy as show in the second column
of Fig. 4, even though the noisy image could attack the
model f successfully. This is perceptually unacceptable in
real attack scenarios since the adversarial example can be
easily detected by an oracle. While existing research [13]
suggests that adding randomness could improve the vivid-
ness of the synthesized details, we propose to add a Gauss-
ian random variable on the embedded code. Let Genc denote
the encoder part of G and Gdec denote the decoder part, the
Gaussian variable z � Nð0; 1Þ is added as

GðxÞ ¼ GdecðGencðxÞ þ zÞ: (13)

In this way, the generated images would exhibit more per-
ceptible details, as illustrated in the last column of Fig. 4.

Fig. 3. After using Genc to extract the image features, we will feature and
Gaussian noise z in the RGB channel for feature concatenation and
inputting to Gdec.

Fig. 4. The adversarial examples generated by GAA with and without the
Gaussian randomness.

Fig. 2. Framework of the generative adversarial attack. It is composed of the generator G, the discriminatorD, and the function model f.
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The above optimized GAN guarantees to synthesize a
vivid image similar to images of class yt. Now consider that
another objective is to enforce the prediction of x0 by f being
y. A possible manner is to directly minimize Ly ¼ Jðy; fðx0ÞÞ,
where J denotes the loss function measuring the difference
between y and fðx0Þ, for example the cross-entropy loss. But
we empirically find that this loss cannot produce strong
transferability of the adversarial examples, which may be
caused by the hard constraint on labels. Alternatively, we
know that when x and x0 have the same label, their features
extracted by f should be similar to each other. Then, it is nat-
ural tominimize the distance between the features, i.e.,

Lf ¼ kfeðxÞ � feðx0Þk2; (14)

where fe is the feature extraction function in the model f ,
for example the output of the stage-2 in Resnet [52]. This
loss imposes a soft constraint instead of a hard constraint
between x and x0, which is demonstrated to be effective in
experiments.

By combining the above introduced losses, we obtain the
final loss for training the whole model:

L ¼ LGAN þ gLf; (15)

where g is a hyper-parameter to balance the influence of Lf .

4.2 Training Details

Here, we introduce a specific setting in our method. From
the previous discussion, we know that the proposed model
transforms the image x belong to class y to the image xt

belonging to class yt. Hence, in the training process, we
need to sample a pair ðx; xtÞ from two classes. Specifically,
assume that a dataset has C classes in total. We randomly
draw a sample x from the whole dataset, which has the
ground-truth label y. Then, the target image xt is randomly
selected from the class yt ¼ ðyþ 1Þ%C. The Gaussian vector
z is randomly sampled at each time. Note that the function
model f is fixed during training since it is the model to be
attacked and is used to measure the distance between the
features of x and x0. The other training settings of the pro-
posed model follow most of existing GAN settings, which
will be detailed in Section 5.1.

The proposed model follows the convergence property of
a typical GAN, which plays a Nash equilibrium problem.
That is saying, the generator and the discriminator are opti-
mized alternately until there is no incentive for both models
to deviate from their states. As well known, training such a
GAN model is not a stable process. Hence, to alleviate this
issue, we adjust the learning rate dynamically when updat-
ing the parameters of G. Fig. 5 illustrates the curves of the
training losses on different datasets. It can be seen that the
models on MINST and CIFAR-10 converge quickly, being
stable at around 1000 epochs and 2000 epochs, respectively.
The models on ImageNet require more epochs for conver-
gence. Fig. 6 displays the attack success rate on the verifica-
tion set of MNIST, CIFAR-10, and ImageNet, in which
similar convergence effects are exhibited.

4.3 Generation of Adversarial Examples

Given the well-trained generator G and an original image x,
we generate the adversarial example as following. A random

vector z is drawn from the standard Gaussian distribution.
To perform attacking based on x, we manually identify its
label y and then determine the target label according to the
class pairs used in training, i.e., yt ¼ ðyþ 1Þ%C. The target
image xt is randomly sampled from the data set of the yt-th
class. Finally, the adversarial example is computed as:

x0 ¼ GdecðGencðxÞ þ zÞ: (16)

5 EXPERIMENTS

In this section, we conduct a series of experiments onmultiple
datasets to validate the effectiveness of the proposed method.
The competitor for comparison is selected as the existing
Type I attack method [33], which introduces two models
including SVAE and StyleGAN. It is verified that the existing
Type II attack defensemethod cannotwithstandType I attack.

5.1 Settings

5.1.1 Datasets

To examine the attack performance of the proposed method on
different data, we involve four datasets, including MNIST1,
CIFAR-102, ImageNet ILSVRC2016validation set3, andCelebA4.

5.1.2 Attacked Models

The models to be attacked include FC which is composed of
5 fully connected layers, CFC which is composed of 3 con-
volutional layers and 2 fully connected layers, VGG165,
ResNet18, ResNet506, ResNet1017, DenseNet1218, Incep-
tionV39, and EfficientNetB010. On each dataset, we select

Fig. 5. It is the training loss value of GAA on MNIST, CIFAR-10 and
ImageNet. The x-coordinate is an epoch,y-coordinate is the loss value.

1. http://yann.lecun.com/exdb/mnist/
2. http://www.cs.toronto.edu/�kriz/cifar.html
3. http://image-net.org/challenges/LSVRC/2016/index
4. http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
5. https://storage.googleapis.com/tensorflow/keras-applications/

vgg16/vgg16_weights_tf_dim_ordering_tf_kernels.h5
6. https://storage.googleapis.com/tensorflow/keras-applications/

resnet/resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5
7. https://storage.googleapis.com/tensorflow/keras-applications/

resnet/resnet101_weights_tf_dim_ordering_tf_kernels.h5
8. https://storage.googleapis.com/tensorflow/keras-applications/

densenet/densenet121_weights_tf_dim_ordering_tf_kernels.h5
9. https://storage.googleapis.com/tensorflow/keras-applications/

inception_v3/inception_v3_weights_tf_dim_ordering_tf_kernels.h5
10. https://storage.googleapis.com/keras-applications/

efficientnetb0.h5
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from the above models such that the model size matches
with the size of the dataset, to avoid underfitting or overfit-
ting. The models with public links are pretrained on Image-
Net. Given a certain dataset, the model is trained from
scratch or finetuned on the dataset before being attacked,
except for using an ImageNet-pretrained model on the
ImageNet dataset.

5.1.3 Metrics

To measure the success rate of Type I attack, we compute
the recognition rate of each attacked model on the generated
adversarial examples.

P ¼ TP

TP þ FP
; (17)

where TP is true positive, which indicates that the detection
of the adversarial examples is the result of the original images
label, FP is false positive, which represents the result of
detecting that the adversarial examples are not recognized as
the original images label. Ideally, if the performance of the
attackmethod is pleasing, the recognition rate remains almost
unchanged between the original examples and the adversar-
ial examples. In each case of the following comparisons, we
randomly select 1000 images from the corresponding dataset
as the original images and then compute the recognition rate.
This process is repeated for 3 times in each comparison and
the reported performance is an averaged value.

5.1.4 Implementations

In the proposed model, Genc is implemented as the stacked
convolutional layers of VGG16 without the fully connected
layers. Gdec is built as the architecture [ConvT-512/BN,
ConvT-256/BN, ConvT-128/BN, ConvT-128/BN, ConvT-
64/BN, ConvT-32/BN, ConvT-3/Tanh] with the kernel size
of 3. D is realized as VGG16 with proper modification
according to the class numbers in those datasets. Consider-
ing that the data variance of MNIST is relatively low, Genc,
Gdec, and D are implemented as lightweight models which
are detailed in the Table 1.

The feature distance between the original image x and
the adversarial example x0 is computed based on fe. In dif-
ferent models, the selected layers for computing fe are listed
in Table 2. Note that for all models, we use multiple layers
to extract features such that the similarity between the two
examples can be enhanced during training.

For the hyper-parameters, we set g ¼ 0:8 for MNIST and
CIFAR-10, g ¼ 1 for ImageNet and CelebA. The whole
model is trained by using the Adam algorithm [53]. The
learning rate is set to 0.0002 for MNIST and CIFAR-10,
0.0001 for ImageNet and CelebA. The batch size is set to 512
for MNIST, 128 for CIFAR-10, and 32 for ImageNet and Cel-
ebA. Training runs for 100,000 iterations on all datasets. All
the experiments are conducted on a GPU server with one
Intel Xeon E5 2620 v4, 128 GB RAM, and two NVIDIA RTX

TABLE 1
The Architecture of GAA Used in MNIST

G D

IN(28� 28 image) IN(GencðxÞ þ z) IN(28� 28 image)

Conv1-64
FC-6086

Conv1-64
BN BN
Maxpool Maxpool

Conv-128
ConvT-256 BN

Conv-128
BN BN
Maxpool Maxpool

Conv-256
ConvT-128 BN

Conv-256
BN BN
Maxpool Maxpool

Conv-512
ConvT-64 BN

Conv-512
BN BN
Maxpool Maxpool

Conv-512
ConvT-32 BN

Conv-512
BN BN

FC-512 ConvT-1
FC-1 FC-10FC-100 Tanh

TABLE 2
The Selected Layers of Different Models for Computing fe

Model Layers

FC fc_3,fc_5

CFC
conv2
conv3

VGG16
block2_conv1
block3_conv1
block4_conv1

ResNet50
conv2_block1_1_conv
conv3_block1_1_conv
conv4_block1_1_conv

DenseNet121
conv2_block1_1_conv
conv3_block1_1_conv
conv4_block1_1_conv

ResNet101

conv2_block1_0_conv
conv3_block1_0_conv
conv4_block1_0_conv
conv5_block1_0_conv

InceptionV3
conv2d_1
conv3d_1
conv4d_1

EfficientNetB0

block2a_expand_conv
block3a_expand_conv
block4a_expand_conv
block5a_expand_conv

Fig. 6. The x-coordinate is an epoch,y-coordinate is the attack acc(%).
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2080 TI GPUs. The implementation is under CentOS 7 with
Python 3.6 and Tensorflow-GPU 2.0.

5.2 Stability of G Structure

In this part, we explore the impact of the G structures on
MNIST, CIFAR-10, and ImageNet. A layer in our implemen-
tation consists of the Conv, BN, and Maxpool operations.
The number of layers in Genc and Gdec are equal. We test the
cases that G contains 8, 12, and 16 layers in MNIST and
CIFAR10, which are denoted as G1, G2, and G3, respec-
tively. The experimental results are shown in Table 4. On
ImageNet, we use the layers of VGG13, VGG16, and VGG19
as Genc, which are denoted as GV 13, GV 16, and GV 19, respec-
tively, while the layer numbers in Gdec are the same as Genc.
The experimental results are listed in Table 5. These results
show that the best performance is obtained when the model
complexity matches the data complexity.

G3’s attack success rate fluctuates greatly on the MINST.
Others are relatively stable. This may be because G3 is too
large compared to MNIST, which makes it prone to overfit-
ting during network training.

5.3 Comparison of Attack Performance

5.3.1 Results on MNIST

On this dataset, we employ FC, CFC, and ResNet18 as the
attacked models, which are trained from scratch. The attack
performance is listed in Table 3, we can observe that GAA
outperforms SVAE by 0.5% and 0.4% on the CFC and
ResNet18 model attack, from which it is seen that GAA pro-
duces a slightly higher accuracy than SVAE when attacking
CFC and ResNet18, yielding lower influence on the model
performance. Since the data of MNIST is relatively simple,
the transformation from the original images to the adversar-
ial examples is easy to be finished. We also plot the gener-
ated examples by GAA in different iterations of training, as
illustrated in Fig. 7, which shows consistent appearances
between the generated examples and the targets.

5.3.2 Results on CIFAR-10

In this dataset, CFC, VGG16, ResNet50, and DenseNet121
are selected as the attacked models. Here, we conduct the
experiment of within-dataset attack, i.e., both the original
images and the target images coming from CIFAR-10. Fig. 8
shows the visual result of the attack. The comparison results
are listed in Table 6, which shows GAA is only 0.1% lower
than SVAE when attacking ResNet50. While attacking other
models, the attack success rate of GAA is 2% to 4% higher
than SVAE, which indicates that GAA produces noticeable
improvement compared with SVAE.

5.3.3 Results on ImageNet

In this experiment, we attack the models including
ResNet50, InceptionV3, ResNet101, DenseNet121, and Effi-
cientNetB0. The accuracy is computed as the top-1 perfor-
mance and the results are reported in Table 7. We can see
that GAA is significantly better than SVAE when attacking
large-scale images. The attack success rate of GAA is 2%,
4.3%, 2.3%, and 2.5% higher than SVAE on ResNet50,
ResNet101, DenseNet121 and EfficientNetB0, respectively.

5.3.4 Results on CelebA

The experiment on CelebA focuses on how the Type I attack
affects the face recognition rate. We follow the settings of [33]
and use FaceNet [54] trained on CelebA to perform face recog-
nition. FaceNet verifies two images to be the same person if the
face feature distance is smaller than a threshold (e.g. 1.06). To
attack FaceNet, both SVAE and GAA try to change the gender
of the character in an image but fool FaceNet tomake the origi-
nal recognition. Alternatively, StyleGAN and GAA can gener-
ate a face image without the gender constraint, where only is
the identity required to be changed. We make comparisons on
these two cases, and obtain the results listed in Table 8 which
validates the superiority of GAA. Several generated examples
are plotted in Fig. 9. It is interesting that the examples by GAA
have lower feature distances to the original images than the
competitors, and StyleGAN may produce non-face images
even through the other image exhibits high-quality details.

While the above results validate the Type I attack perfor-
mance, we also note that the adversarial examples gener-
ated by GAA can be used to perform Type II attack, i.e.,
using x0 to attack f with respect to xt. Due to page limita-
tion, more high-quality results can be found in the supple-
mentary material where we quantify the perturbation,
showing that the perturbation is imperceptible as required
by Type II attack. Hence, it may be possible to optimize
both Type I and Type II attacks simultaneously, which
could be an interesting topic.

TABLE 5
The Attack Success Rate of Different G-Structures on ImageNet

VGG19 ResNet101 InceptionV3 DenseNet121

GV 13 71.5% 70.6% 76.2% 75.3%
GV 16 75.6% 75.7% 74.5% 77.8%
GV 19 75.7% 75.4% 74.5% 77.7%

The structures contain VGG13, VGG16, and VGG19 as Genc, which are
denoted as GV 13, GV 16, and GV 19, respectively, while the layer numbers in
Gdec are the same as Genc.

TABLE 4
The Attack Success Rate of Different G-Structures on MNIST

and CIFAR-10

MNIST CIFAR-10

FC CFC ResNet18 CFC VGG16 ResNet50

G1 96.5% 97.8% 98.3% 85.7% 92.7% 91.1%
G2 96.9% 97.6% 98.3% 86.7% 92.8% 90.7%
G3 76.4% 79.3% 73.4% 86.8% 93.2% 91.2%

The structures contain 8, 12, and 16 layers, which are denoted as G1, G2, and
G3, respectively.

TABLE 3
Attack Performance on MNIST

GAA SVAE ORIGINAL

FC 96.9% 97.1% 99.2%
CFC 97.6% 97.1% 99.3%
ResNet18 98.3% 97.9% 99.6%

The GAA and SVAE columns represent the attack’s success rate, and the
ORIGINAL column represents the accuracy of the clean image on models such
as ResNet18.
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5.4 Outlier Attack

We identify an example as an outlier to the attacked model
f if it is selected from a dataset on which f is not opti-
mized. Regarding this, it is challenging to perform the
cross-dataset attack, which states that the original images
come from CIFAR-10 while the target images are selected
from the Comic Avatar dataset11. This helps us to test
whether the attack is successful when using an image of
different styles. The results are presented in Table 9, where
we see much better accuracies of GAA than SVAE. Several
generated adversarial examples are exhibited in Fig. 10,
which illustrates that GAA produces clean images but
SVAE generates noisy images. All those images are never-
theless labelled as the labels of the original images by the
model ResNet50. This experiment demonstrates the attack-
ability of the deep models by external data with different
styles. To improve model robustness, it would be encour-
aged to consider the resistance to style variances in a
robust learning process.

5.5 Transferability Analyses

In this part, we examine the influence of the loss functions
(i.e., Ly ¼ Jðy; fðx0ÞÞ and Lf ¼ kfeðxÞ � feðx0Þk2) on the
adversarial examples, which relates to Section 4.1. The
baseline is selected as SVAE. The experiment is conducted
on ImageNet, with the results shown in Table 10. GAAy

indicates the model using Ly, while GAAf denotes the
model using Lf . We generate the adversarial examples
based on ResNet20, ResNet101, and InceptionV3, and use
other models for testing the transferability. It can be seen
from Table 10 that the adversarial examples generated by
GAAf possess improved transferability over the others. In
contrast, the adversarial examples generated by GAAy and
SVAE produce limited success rates on attacking different
black-box models. Similar results could be observed from
Fig. 12. In addition, as shown in Fig. 11, we use Grad-
CAM to observe the receptive fields that the model pays
attention to when extracting example features. It can be
seen that the receptive fields are extremely similar when
extracting features from the original image and its corre-
sponding adversarial example. However, the receptive
fields of the adversarial example and target image are
completely different, although they are very similar. The
Lf imposes the transferability on the feature space instead
of the label space, which suggests that the feature similar-
ity is a key factor in generating adversarial examples. In

the following context, we use GAA to denote the specific
GAAf unless otherwise noted.

5.6 Attacks Versus Defense Models

To explore whether the existing Type II adversarial training
defense models have a defensive effect on the Type I adver-
sarial examples generated byGAA,we employ three adversa-

Fig. 8. On the CIFAR-10 data, we successfully converted the dog cate-
gory image into the cat category and let the classifier think that x0 is still
a dog.

Fig. 7. Illustration of the generated MNISTexamples at different iterations. The x column plots the original images and the xt column plots the target
images. The recognition rates by R at different iterations are marked on the top of the images.

TABLE 6
Attack Performance on CIFAR-10 While Using CIFAR-10 as the

Source of Target Images

GAA SVAE ORIGINAL

CFC 86.7% 85.6% 90.6%
VGG16 93.2% 89.5% 94.3%
ResNet50 91.2% 91.3% 92.7%
DenseNet121 93.6% 89.9% 95.3%

The GAA and SVAE columns represent the attack’s success rate, and the ORIGI-
NAL column represents the accuracy of the clean image on different models.

TABLE 7
Attack Performance on ImageNet

GAA SVAE ORIGINAL

ResNet50 75.2% 73.2% 76.0%
InceptionV3 73.9% 74.6% 78.8%
ResNet101 76.8% 72.5% 80.9%
DenseNet121 77.5% 75.3% 77.9%
EfficientNetB0 76.2% 74.7% 85.0%

The GAA and SVAE columns represent the attack’s success rate, and the
ORIGINAL column represents the accuracy of the clean image on different
models.11. https://github.com/chenyuntc/pytorch-book
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rially trained networks in [37], including ens3-adv-Inception-
v3(Inc� v3ens3), ens4-adv-Inception-v3 (Inc� v3ens4), and
ens-adv-Inception-ResNet-v2(IncRes� v2ens). Note that the

experiment is under a black-box setting. As shown inTable 11,
we notice that these defensemodels for Type II attacks are dif-
ficult to resist Type I attacks.

Inspired by Cihang Xie [55], we expect to improve the
robustness of the model by using the Type I adversarial
examples during training. At this regard, the adversarial
examples generated by SVAE and GAA are used for adver-
sarial training of ResNet50, VGG16, and DenseNet121 on
CIFAR-10 and ImageNet. The resultant models are denoted
as ResNet50R, VGG16R, and DenseNet121R, respectively.
The training details are as follows, the initial value of the
learning rate is 0.02. We set learning rate decay to 0.0001 as
the standard scheme in Keras, the batch-size is 256 and 64
respectively, and the label of the adversarial examples x0

will be set to the corresponding target class xt. The whole
training process stops when it is close to overfitting. The
training accuracy is shown in Table 12. We change the target

Fig. 9. Illustration of the adversarial examples generated by SVAE, Style-
GAN, and GAA. The feature distances between x and the generated
examples are marked on top of the images.

TABLE 9
Attack Performance on CIFAR-10 While Using Comic Avatar as

the Source of Target Images

GAA SVAE ORIGINAL

CFC 63.7% 53.6% 90.6%
VGG16 76.8% 70.2% 94.3%
ResNet50 70.5% 68.9% 92.7%
DenseNet121 68.5% 62.5% 95.3%

The GAA and SVAE columns represent the attack’s success rate, and the
ORIGINAL column represents the accuracy of the clean image in models such
as VGG16.

Fig. 10. Illustration of the adversarial examples generated by SVAE and
GAA in the case of cross-dataset attack.

TABLE 10
The Source Model is a White-Box Model That Generates Adversarial Examples, and the Others are Black-Box Models That Test

Adversarial Examples

Source model Attack ResNet50 ResNet101 InceptionV3 DenseNet121 EfficientNetB0

ResNet50
GAAf 75.2%* 71.2% 70.5% 69.3% 70.3%
GAAy 76.6%* 50.3% 3.2% 43.3% 2.9%
SVAE 73.2%* 55.3% 6.5% 12.3% 10.2%

ResNet101
GAAf 70.9% 76.8%* 71.5% 70.1% 69.5%
GAAy 45.6% 75.7%* 5.6% 41.9% 1.9%
SVAE 51.2% 72.5%* 7.2% 15.6% 11.8%

InceptionV3
GAAf 69.8% 69.5% 73.9%* 70.2% 67.6%
GAAy 5.6% 2.3% 74.5%* 33.2% 19.7%
SVAE 13.5% 4.3% 74.6%* 24.7% 14.5%

DenseNet121
GAAf 70.3% 72.6% 72.5% 77.5%* 69.8%
GAAy 47.8% 51.2% 33.9% 77.8%* 19.9%
SVAE 23.6% 35.8% 18.7% 75.3%* 23.5%

EfficientNetB0

GAAf 72.1% 71.8% 71.3% 72.8% 76.2%*
GAAy 15.5% 23.4% 34.5% 5.6% 77.1%*
SVAE 13.9% 24.5% 10.8% 13.4% 74.7%*

The data in the table all represent the success rate of the adversarial sample’s attack on the model. �means the attack success rate of the source model.

TABLE 8
Attack Performance on CelebA

Acc Acc

GAA 71.2% GAA 85.6%
SVAE 69.3% StyleGAN 69.3%

The left comparison considers changing the gender of x, while the right com-
parison considers changing the identity of x.
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category of the original image and generate new adversarial
examples to perform white-box attacks on ResNet50R,
VGG16R and DenseNet121R. The attack effect is shown in
the Table 13.

As seen, it is difficult to improve the defense ability against
the Type I attacks through adversarial training. In addition,
we also perform black-box attack on ResNet50R, VGG16R and
DenseNet121R. Specifically, we reset the target category of the
original image to yt ¼ ðyþ 2Þ%C, and generate adversarial
examples based on ResNet50, VGG16, and DenseNet121. The
examples are input to ResNet50R, VGG16R and
DenseNet121R. The test results are illustrated in Table 14.

Through the above experiments, we conclude that it is
not feasible to improve the model robustness against Type I
attack through adversarial training. The reason is that the
Type II attack limits the perturbation, whereas the Type I
attack tries to maximize the perturbation. Hence, models
are challenging to fit adversarial examples and clean
images. By definition, the Type I attack could generate
examples that poison the training process, yielding prob-
lematic models, whereas the Type II attack could be used to
improve the model robustness.

Fig. 12. Illustration of the transferability. We use the last convolutional layer of VGG16 and ResNet50 to detect the feature similarity between the origi-
nal image (x) and the adversarial example (x0) generated by GAA. xf represents the deep features of x. x0f represents the deep features of x0. The
pairwise_distance is the average of the pixel-wise Euclidean distance, and the cosine_similarity is the average of the cosine similarity.

Fig. 11. There are three rows of images, which are clean image x, adver-
sarial example x0 and target image xt. We leverage Grad-CAM to visual-
ize the layers3 and 4 of ResNet101.

TABLE 11
The Attack Success Rate of GAA on Attacking Type II Defense

Methods

Source model Inc� v3ens3 Inc� v3ens4 IncRes� v2ens

InceptionV3 72.6% 71.5% 69.7%
ResNet50 70.1% 69.9% 69.5%

We use the source models including InceptionV3 and ResNet50 for generating
the adversarial examples.

TABLE 12
The Training Accuracy of ResNet50, VGG16, and DenseNet121

by Feeding an Equal Number of Adversarial Examples and
Clean Images During Adversarial Training

Dataset ResNet50R VGG16R DenseNet121R

CIFAR-10 65.6% 61.5% 67.2%
IamgeNet 65.3% 62.4% 65.6%
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5.7 Efficiency Analyses

We note that the proposed GAA requires only a single for-
ward pass of the generator when making an adversarial
example, whereas SVAE conducts an iterative optimization
process. Here, we compare the time-consuming generation
of adversarial examples on the same datasets (MNIST,
CIFAR-10 and ImageNet) with the identical experimental
platform, and calculate the time from the first to the last
adversarial example generation. A comparison on the time
cost by SVAE and GAA is listed in Table 15, which verifies
that GAA has higher efficiency than SVAE, especially when
the images have large sizes, e.g., in ImageNet.

6 CONCLUSION

The Type I attack views the ambiguity on different classes
as the weakness of a deep model. Adversarial examples
can be generated via transformation from the original
images to those located in the ambiguity region. This
motivates us to propose a novel Type I attack method,
called generative adversarial attack. Based on AC-GAN,
we develop a framework that employs the to-be-attacked
model to constrain the learning process of the generator.
A specialised architecture of the generator is designed by
involving randomness. Extensive experiments demon-
strate the effectiveness of the proposed method and

furthermore, the efficiency is much higher than the exist-
ing optimization-based methods.

Notably, the defense experiments tell us that the adversarial
examples produced by GAA successfully deceive the existing
defense models including the Type II defense methods. More-
over, adversarial trainingwith the Type I adversarial examples
is not a feasible way to improve the model robustness. Gener-
ally, the Type I adversarial attack could be used to poison the
model training process, resulting in weak deep models, while
the Type II attack is helpful for enhancing themodels.
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