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ABSTRACT
Extensive studies have demonstrated that deep neural net-
works (DNNs) are vulnerable to adversarial examples (AEs),
which brings a huge security risk to the application of DNNs,
especially for the AI models developed in the real world. To
impede the process of fully exploiting the vulnerabilities of
existing DNNs and further improving their robustness in the
face of such malicious inputs, many attack methods have been
proposed to build AEs. Despite the significant progress that
has been made recently, existing attack methods still suffer
from the unsatisfactory performance of escaping from being
detected by naked human eyes due to the formulation of AE
heavily relying on a noise-adding manner. Such mentioned
challenges will significantly increase the risk of exposure and
result in an attack to be failed. Therefore, in this paper, we
propose the Salient Spatially Transformed Attack (SSTA), a
novel framework to craft imperceptible AEs, which enhance
the stealthiness of AEs by estimating a smooth spatial trans-
form metric on a most critical area to generate AEs instead
of adding external noise to the whole image. Compared to
SOTA baselines, extensive experiments indicated that SSTA
could effectively improve the imperceptibility of the AEs
while maintaining a 100% attack success rate.

Index Terms— Adversarial Attack, Imperceptible Adver-
sarial Examples, Spatial Transformed Attack.

1. INTRODUCTION

Deep neural networks (DNNs) are susceptible to AEs, which
are crafted by subtly perturbing a clean input [1,2], especially
for computer vision (CV) tasks, like image recognition. The
critical point to carry out adversarial attacks on CV models
is how to generate AEs with attack success rate and high im-
perceptibility. Various methods have been proposed to build
AEs; among them, most such attacks are crafting AEs in op-
timizing noise and adding noise manner.

Although most existing attacks can obtain a high success
rate, they are not ideal in terms of imperceptibility and simi-
larity since the added perturbations are not harmonious with
the clean image [3,4]. To address these issues, some methods
try to generate AEs in a non-noise addition way, such as the
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spatial transform-based attack, which crafts AEs by changing
the specific pixel’s position [5, 6]. Even though these meth-
ods ensure the adversarial perturbations are more harmonious
with the clean counterparts, the imperceptibility is still weak
because they disturb the entire image. In most cases, people
can easily distinguish the AEs generated by these methods
through the naked eyes.

To improve the concealment of AEs, we formulate the
issue of synthesizing AEs beyond additive perturbations and
propose a novel non-addition attack method called SSTA.
More specifically, SSTA uses spatial transformation tech-
niques [7] based on the salient region of the image to generate
AEs, rather than directly adding well-designed noise to the
benign image. The spatial transform technique can calculate
a smooth flow field f for each pixel’s new locations to for-
mulate an eligible AE. To further improve the concealment
and image quality, we constraint the obtained flow field f by
limiting it with a small dynamic flow budget ξ.

Extensive experiments on ImageNet datasets indicate that
the proposed SSTA can make AEs more inconspicuous while
maintaining high attack performance. Besides, evaluation re-
sults on many metrics involve similarity and image quality
showing that our AEs are more similar to their benign coun-
terparts and preserved the vivid details. The main contribu-
tions could be summarized as follows:

• We formulate the imperceptible AE by applying spatial
transform operations in the salient region, which are ex-
tracted by object detection method, rather than in a noise-
adding manner.

• To balance the attack performance and the concealment of
the generated AEs, we propose a dynamic strategy to update
the extracted critical region and flow budget ξ associated
with the number of optimizations increases.

• Comparing with the state-of-the-art imperceptible attacks,
experimental results on various victim models show our
method’s superiority in synthesizing AEs with the attack
ability, invisibility, and image quality and guarantee the
AEs’ similarity to the original image.

The rest of this paper is organized as follows. In Sec.
2, we provide the details of the proposed SSTA framework.
The experiments are presented in Sec. 3, with the conclusion
drawn in Sec. 4.
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x

 f M M(f)

xadv

x :      Clean Image
xadv  : Adv Image
f :        Estimated flow
M :      Mask
M(f) :  Masked flow

Fig. 1. Overview of SSTA, where ⊕ represents applying Mask M , and ⊗ represents the spatial transformation operation.

2. METHODOLOGY

2.1. Problem Definition

Given a well-trained DNN classifier C and an input x with
its corresponding label y, we have C(x) = y. The AE
xadv is a neighbor of x and satisfies that C(xadv) ̸= y and
∥xadv − x∥p ≤ ϵ, where the Lp-norm is used as the metric
function and ϵ is usually a small noise budget. With this def-
inition, the problem of finding an AE becomes a constrained
optimization problem:

xadv = argmaxL
∥xadv−x∥p≤ϵ

(C(xadv) ̸= y), (1)

where L stands for a loss function that measures the confi-
dence of the model outputs.

Previous works craft an AE xadv by adding Lp-norm con-
strained noise δ to the clean image x as

xadv = x+ δ, s.t. ∥δ∥p ≤ ϵ. (2)

Unlike this, in this paper, we combine the salient region
extraction and the spatial transform to build the imperceptible
AE xadv . As illustrated in Fig. 1, the proposed salient spa-
tially transformed attack framework can be divided into two
stages: the first stage is to obtain a salient region mask M(·);
the other one is to calculate the flow field f . Subsequently, we
can formulate the AE xadv by applying the calculated flow
field f to the masked salient area M(·) of clean image.

2.2. Salient Region Extraction

In this paper, we use the salient detection method TRACER
[8], which can efficiently detect salient objects in images, to

extract the critical area mask M(·). In preliminary experi-
ments, we also tried other area extraction methods like LC [9],
FT [10], and Grad-CAM [11], but found TRACER [8] is more
suitable because it can efficiently detect salient objects in an
image and return their corresponding regions, the results are
showing in Fig. 2.

Original LC TF Grad_CAM TRACER

Fig. 2. The extracted area by different methods.

Moreover, TRACER can return several regions rτ (τ =
0, ..., 255) with various scales depending on different thresh-
olds τ when extracting salient areas, which will be helpful to
the downstream tasks, such as image segmentation and back-
ground removal. In our work, we first take the region with
a high threshold τ (i.e., τ = 250) as the region mask M(·).
Then, in the process of generating AEs, the M(·) will be up-
dated by decreasing the threshold τ to get a larger region.

2.3. Adversarial Example Generation

After computing the mask M(·), we subsequently build AEs
by utilizing the spatial transform, which using a flow field
matrix f = [2, h, w] to transform the original image x to
xst [5]. Specifically, assume the input is x and its trans-
formed counterpart xst, for the i-th pixel in xst at the pixel
location (ui

st, v
i
st), we need to calculate the flow field fi =

(∆ui,∆vi). So, the i-th pixel xi’s location in the transformed
image can be indicated as:

(ui, vi) = (ui
st +∆ui, vist +∆vi). (3)
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To ensure the flow field f is differentiable, the bi-linear
interpolation [12] is used to obtain the four neighboring pix-
els’ value surrounding the location (ui

st+∆ui, vist+∆vi) for
the transformed image xst as:

xi
st =

∑
q∈N(ui,vi)

xq(1− |ui − uq|)(1− |vi − vq|), (4)

where N(ui, vi) is the neighborhood, that is, the four po-
sitions (top-left, top-right, bottom-left, bottom-right) tightly
surrounding the target pixel (ui, vi). In adversarial attacks,
the calculated xst is the final AE xadv . Once the f has been
computed, we can obtain the xadv by combining M(·) and
flow field f , which is given by:

xadv = M(
∑

q∈N(ui,vi)

xq(1− |ui − uq|)(1− |vi − vq|))

+ (x−M(x)), (5)

where M(x) represents the salient region while the x −
M(x) indicates the area out of the salient region.

In practice, we regard the problem of calculating flow
field f as an optimization task. In this paper, we use the
AdamW to optimize flow f .

2.4. Objective Functions

Taking the attack success rate and visual invisibility of the
generated AEs into account, we divide the objective function
into two parts, where one is the adversarial loss and the other
is a constraint for the flow field. Unlike other flow field-based
attack methods, which constrain the size of the flow field by
the flow loss proposed in [5], in our method, we use a dy-
namically updated flow field budget ξ (a small number, like
1 ∗ 10−2) to regularize the flow field f . For adversarial at-
tacks, the goal is making the prediction C(xadv) ̸= y, so we
give the objective function as:

Ladv(x, y,f) = max[C(xadv)y −max
k ̸=y

C(xadv)k, C],

s.t.∥f∥ ≤ ξ. (6)

where k is the predicted class and C is it’s confidence.

3. EXPERIMENTS

3.1. Settings

Dataset: We verify the performance of our method on the
development set of ImageNet-Compatible Dataset, a subset of
ImageNet-K, which consists of 1,000 images, and we resized
the image to 224x224x3 to adopt the victim models.

Models: We use the PyTorch pre-trained model as the
victim models, including VGG-19 [13], ResNet-50 [14],
DenseNet-121 [15], ViT-16 [16] and Swin B [17].

Baselines: The baselines include the stAdv [5], Chroma-
Shift [6] and AdvDrop [18].

Metrics: We compare our proposed method with base-
lines concerned with Attack Success Rate (ASR) for attack
performance. For image quality, we use the following percep-
tual metrics referring to image quality, including LPIPS [19],
DISTS [20], FID, MSE, UQI [21], SCC [22], PSNR [23],
VIPF [24], SSIM and NIQE, to evaluate the difference be-
tween the generated AEs and their benign counterparts and
the image quality of these AEs.

3.2. Attacking Performance

We investigate the ASR of the proposed method in attacking
various image classifiers. The results are shown in Table. 1,
we derive that SSTA can obtain the SOTA attack performance
by only disturbing the minimal local area, i.e., the salient re-
gion, while other attacks need to distort the whole image. This
demonstrates the superiority of our method.

Table 1. The ASR of baselines and SSTA.
Methods VGG-19 ResNet-50 DenseNet-121 VIT-16 Swin B

stAdv 100 100 100 100 100
Chroma-Shift 93.69 94.67 95.1 95.09 96.66

AdvDrop 100 99.07 100 95.97 99.79
SSTA 100 99.86 100 100 100

3.3. Image Quality and Similarity

The results of image quality and similarity are shown in Table.
2, which indicated that the proposed method has the lowest
LPIPS, DISTS, FID, and MSE (the lower is better) are 0.0038,
0.0091, 16.3876 and 2.1210, respectively, and has the highest
UQI, SCC, PSNR, VIPF, SSIM, and NIQE (the higher is bet-
ter), achieving 0.9998, 0.9890, 49.2397, 0.9487, 0.9987 and
43.9611, respectively, in comparison to the baselines. The
results point out that the proposed method is superior to the
existing imperceptible attacks.

Chroma-Shift AdvDrop SSTAstAdv

Fig. 3. AEs and their corresponding perturbations.
To visualize the difference between the AEs generated

by our method and the baselines, we also draw the adver-
sarial perturbation generated by stAdv, Chroma-Shift, Adv-
Drop and the proposed method in Fig. 3, the target model
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Table 2. Perceptual distances were calculated on fooled ex-
amples by stAdv, Chroma-Shift and the proposed SSTA.

Metrics stAdv Chroma-Shift AdvDrop SSAT

LPIPS ↓ 0.1595 0.0135 0.0956 0.0038
DISTS ↓ 0.1524 0.0165 0.0678 0.0091

FID ↓ 60.2464 88.8750 46.7813 16.3876
MSE ↓ 95.7488 23.5399 17.0450 2.1210
UQI ↑ 0.9925 0.9925 0.9952 0.9998
SCC ↑ 0.6415 0.9623 0.6894 0.9890

PSNR ↑ 29.8119 36.5651 36.1464 49.2397
VIFP ↑ 0.5229 0.7644 0.6474 0.9487
SSIM ↑ 0.9391 0.9771 0.9688 0.9987
NIQE ↑ 33.3234 43.5860 39.8657 43.9611

is pre-trained ResNet-50. The first row is the AEs and their
corresponding noise of stAdv, Chroma-Shift, AdvDrop and
our method, respectively. Noted that, for better observation,
we magnified the noise by a factor of 30. From Fig. 3, we
can clearly observe that the baselines distort the whole im-
age. In contrast, the noise in our generated AEs is milder
and focused on the salient region, and more imperceptible to
human eyes. These results indicate that the AEs generated
by the proposed method have better concealment and can not
easily be detected.

3.4. Further Human Perceptual Study

This experiment is for subjective evaluation, i.e., in most
cases, whether AEs generated based on SSTA are indistin-
guishable from their original samples. We argue that AEs
generated by SSTA not only satisfy imperceptibility but are
also inconspicuous to the human eye. To validate this claim,
we compare AEs generated by SSTA with those generated
by baselines. In our human perception study, we display the
original image and the AEs on the computer screen and give
each participant 100 seconds to judge every image. Empir-
ically, 100 seconds is enough to decide and point out any
visible distortion for the participants. We used the randomly
sampled 50 images for this experiment. The participants are
shown 2-5 images, the left is always the clean image and
its right side shows adversarial images generated by various
methods or the same clean image. Participants will be asked
“Are the images on the right the same as the left (the clean
one)?” and each participant will provide more than 50 anno-
tations. For each image to be checked, participants can zoom
it as large as possible to provide convenience for participants
to observe.

A total of 20+ participants were involved in assessing
AEs. For the sake of fairness, we put the clean images and
adversarial images generated by different methods into the
dataset to be checked together. These participants provided
more than 1,000 useful annotations. As shown in Fig. 4, the
AEs generated by SSTA are generally considered to be the

0 20 40 60 80

stAdv

AdvDrop

Chroma-shift

SSTA

Clean

The percent of clean image (%)

Fig. 4. Human perceptual study results.

same as the original images. 88.98% of the annotations were
considered unmodified, meaning that most participants could
not distinguish the AEs generated by SSTA. Conversely, for
AEs generated by baseline methods, participants were able to
spot distortions more easily, more than 90%, 55% and 30%
of the total annotations have been picked out for stAdv, Adv-
Drop and Chroma-shift, respectively, indicating that the AEs
generated by these baseline methods did not affect humans to
identify objects in images correctly but very easy to find that
they had tampered.

4. CONCLUSIONS

In this paper, we present a novel non-noise additional method,
called SSTA, which combines performing the spatial transfor-
mation in salient regions with the optimal flow field to syn-
thesize AEs. Extensive experiments show that the proposed
method is superior to the state-of-the-art methods in terms of
prominent concealment and high image quality, and the gen-
erated AEs are indistinguishable by the human eyes. Benefit-
ting from generating AEs without noise-adding, the proposed
SSTA provides a new efficient way to evaluate the robustness
of classifiers and enhance their performance using techniques
like fine-tuning or adversarial training. Furthermore, the pro-
posed approach can be used as a reliable tool to build more
robust models.
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