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Abstract

Copy–move forgery poses a significant threat to social life and has aroused much atten-
tion in recent years. Although many copy-move forgery detection (CMFD) methods have
been proposed, the most existing CMFD methods are short of adaptability in detecting
images, which leads to the limitation on detection effects. To solve this problem, the paper
proposes a novel keypoint-based CMFD method: second-keypoint matching and double
adaptive filtering (SMDAF). Motivated by image matching based on keypoint, the second-
keypoint matching method is designed to match keypoints extracted from copy–move
forgery images, which can be used for both the single-CMFD and the multiple-CMFD.
Then, a double adaptive filter (DAF) based on the AdaLAM algorithm and the KANN-
DBSCAN clustering algorithm to filter wrong keypoint matches adaptively are proposed,
according to the distinct distribution of keypoints in each image. Finally, the forgery regions
are presented by finding their convex hulls and padding them. Compared with existing
methods, extensive experiments show that the SMDAF method significantly provides more
efficiency in detecting images under simulated real-world conditions, has better robust-
ness when facing images with different post-treatment attacks, and is more effective in
distinguishing images that look copy–move forged but are real.

1 INTRODUCTION

The expanding and flourishing of IoT (Internet of things) has
brought us into the era of big data. It is no doubt that dif-
ferent kinds of multimedia data are produced, transferred, and
modified each day. People are not unusual to observe that pow-
erful image editing tools can easily manipulate a certain image
[1, 2] so as for beautification and entertainment. However,
this may bring potentially severe consequences for mislead-
ing personal judgment, imposing negative impacts on society
and disturbing digital forensics [3, 4]. Therefore, image forg-
eries [5–7], including splicing, retouching, and copy–move, has
drawn broad concern in several essential image application
fields.
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Compared with other image forgeries, copy–move forgery is
one of the most common manners, which copy certain areas
and paste them into other parts in the same image, as is shown
in Figure 1. Since the clone region with any shape can be located
at any region, it is infeasible to search for all possible forgery
parts. In addition, it is uneasy to detect by looking for feature
differences between forged and other areas because the copy–
pasted area comes from the same image, where the features (e.g.
colour and noise) are compatible. Hence, there are still remain-
ing challenges to perform copy–move forgery detection [8–10]
(CMFD). In general, there are two goals for CMFD:

(1) binary classification: to judge whether an image is forged
or not.
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FIGURE 1 From left to right: original image (a), copy–move forged
image (b), and binary groundtruth overlying copy–move area (c)

(2) forgery locating: to precisely label or locate elaborate
designed copy–move parts from the whole image.

In the past few years, many copy–move forgery detection
methods have been proposed, which can be roughly divided
into block-based methods [11–15], deep learning-based meth-
ods [16–21], and feature point-based methods [22–30]. The
block-based algorithms are inefficient and do not perform well
in detecting the copy–move regions with different geometric
and post-processing attack operations. Although deep learning-
based methods have gained state-of-the-art success in many
other fields, one interesting fact here is that these methods need
many training data, and they cannot achieve good performance
in CMFD. Compared with block-based and deep learning-based
methods, the keypoint-based methods have achieved relatively
superior performance concerning detection consequences and
running speed [29, 31]. However, in the existing keypoint-based
methods, the descriptors extracted from keypoints may not all
meet the needs. The results contain a large number of false
matching and reduce the matching accuracy. To overcome this
weakness, researchers proposed some algorithms for filtering
the wrong matching keypoint pairs [27–29]. Chen et al. [27]
aggregated the feature and colour of the extracted keypoints,
then used reverse-G2NN and outpoint filtering algorithm to
filter the keypoints. Wang et al. [28] used candidate clustering
based on offset information to remove wrong matching pairs
and used RANSAC and ZNCC to locate duplicate regions. And
Yang et al. [29] proposed a two-stage(mesh-based and cluster-
based) filter to select most of the keypoint pairs of wrong
matching and then applied the Delaunay triangulation algorithm
for image matting.

The results are still not satisfying because they often use
a general model to filter different keypoint sets. However,
these methods are lack of adaptability because the keypoint set
extracted from each image has its distinctive distribution, which
leads to the poor effect when filtering some special sets. To solve

this problem, different from the works mentioned above, we
propose a novel copy–move forgery detection method called
SMDAF, based on second-keypoint matching (SM) and double
adaptive filtering (DAF).

The main contributions of this paper are as follows:

∙ This paper proposes a novel keypoint-based method for
CMFD called SMDAF. It is more adaptable to filter false key-
point matching and the locating of the forgery areas is more
accurate.

∙ The proposed second-keypoint matching method (SM) is
used to obtain more keypoint matching, which can be used
for both single and multiple CMFD problems.

∙ The proposed double adaptive filter (DAF) shows effective
adaptability in filtering false keypoint matching and clustering
internal keypoints. It also makes the location of the forgery
areas more accurate.

Extensive experiments show that the SMDAF method is
significantly more efficient in detecting images under simu-
lated real-world conditions, has better robustness against images
with different post-processing attacks, and is more effective in
discriminating images that look copy–move forged but are real.

The rest of this article is organised as follows: The related
work is given in Section 2, the proposed method is explained in
Section 3, the experiments shown in Section 4, and the whole
paper is concluded in Section 5.

2 RELATED WORK

Copy–move forgery detection methods can be roughly divided
into block-based methods, deep learning-based methods and
keypoint-based methods. In this section, we introduce related
researches in these areas.

2.1 Block-based methods

Block-based methods divide the image into overlapping blocks
and map them based on their features. Different methods use
different transformations to represent the features of blocks. In
ref. [11], Ouyang et al. proposed a method based on the pyramid
model and Zernike moments. In ref. [12], Mahmood et al. com-
bined DWT and Hu Moments together. Warif et al. proposed
CMF-iteMS that extracted feature by using polar cosine trans-
form (PCT) [13]. Li et al. used polar sine transform (PST) to
tramsform features of blocks. And Emam et al. used the polar
complex exponential transform (PCET) [15] kernels to repre-
sent each block. However, high computational complexity is the
common defect of the above methods, and it is not suitable for
solving large-scale rotation scaling and typical image processing
operations like noise.

2.2 Deep learning-based methods

In recent years, some deep learning-based methods have
been applied to solve copy–move forgery detection problems

 17519667, 2022, 13, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/ipr2.12578, W

iley O
nline L

ibrary on [11/11/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



YUE ET AL. 3591

and proved to have great potential based on their excellent
performance. Wu et al. [17] proposed an end-to-end deep neu-
ral network to detect copy–move forgery. In ref. [16], they
improved their work as BusterNet with dual-branch architec-
ture. Then, in ref. [19], Zhong et al. proposed the end-to-end
Dense-InceptionNet based on the current popular convolu-
tional neural network. In ref. [18], Zhu et al. developed AR-Net
based on adaptive attention and residual refinement. Differ-
ent from the above methods that are concentrate on CMFD,
Abhishek et al. [20] used a deep convolutional neural network
and semantic segmentation to detect copy–move and splicing
forged images, and Yohanna et al. [21] analysed two deep learn-
ing methods, explored the detecting effect of using different
neural network structures. However, these deep learning-based
methods generally require a fixed image size and a vast number
of training and test data. Therefore, the detection results of deep
learning-based methods entirely depend on the training data’s
quality. They failed to detect copy–move forgery images when
faced with unpredictable characteristics generated in a new way.
In short, the existing methods based on deep learning are still
not well perform for copy–move forgery detection.

2.3 Keypoint-based methods

Some researchers use the local invariance technology for image
forensics, such as scale-invariant feature transform (SIFT)
[22–25, 27, 32], speeded-up robust features (SURF) [26, 33] and
oriented fast and rotated brief (ORB) [34, 35]. Amerini et al.
[22] and Pan et al.[23] proposed methods based on SIFT for
image copy–move forgery detection and achieved a satisfying
solution. Dhivya s et al. [26] used SURF to extract features and
then trained the SVM for classification. Moreover, Tian et al.
[35] used ORB to extract features that can significantly lessen
detection time. For improving the number of keypoints, Yang
et al. [24] proposed an algorithm based on SIFT that is robust to
image transform to extract keypoints from images. In ref. [25],
Li et al. discovered that changing the image contrast and scaling
the image can increase the number of SIFT feature points, based
on this, they optimised the performance of small or smooth
copy–move areas in their method. However, due to the limita-
tion of descriptors extracted from keypoints, they often return
false matches, which affects the detecting results.

To improve the effects of CMFD, we propose a novel
method called SMDAF, which can filter false matches effec-
tively and locate the forgery areas correctly. Experimental results
show that SMDAF has competitive results compared with the
existing methods.

3 PROPOSED METHOD

In this section, we first briefly introduce the related concepts
and fundamental knowledge for a better understanding of our
later analysis. Then we present a step by step description of our
method. As shown in Figure 2, the method can be divided into
the following four steps: keypoint extraction, second-keypoint
matching, double adaptive filtering, and forgery locating.

3.1 Preliminaries

3.1.1 AdaLAM outpoint filter

As a fast and accurate outlier filter, AdaLAM is mainly used
in image matching [36] based on keypoint. The methods in
keypoint-based image matching often form the nearest neigh-
bour matching set to draw correspondences between images, as
is shown in Figure 3(a). The main steps of AdaLAM algorithm
can be summarised as follows:

(1) It takes a large number of matched keypoints as input, then
selects a limited number of seed points that are confident
and well-distributed based on neighbouring compatible
correspondences in this algorithm.

(2) By running highly parallel RANSAC with sample-adaptive
inlier thresholds, it verifies local affine consistency in
neighbourhoods of each seed point.

(3) It outputs the union of all the inliers of the seed points
with strong enough support within each one’s specific inlier
threshold.

Similar to image matching, copy–move forgery detection
based on keypoint correspond matchings in one image, as is
shown in Figure 3(b). Motivated by this, our proposed method
uses the AdaLAM algorithm for first outpoint filtering.

3.1.2 KANN-DBSCAN

The KANN-DBSCAN algorithm is based on DBSCAN [37],
a density-based clustering method that is sensitive to Eps and
MinPts. Each parameter can be explained in Figure 4.

To adaptively find the optimum parameter pair (Eps, MinPts)
that can be set for getting a better clustering effect, the KANN-
DBSCAN algorithm is proposed. It first generates the candidate
Eps list by using the proposed K-ANN based on the average
nearest neighbour algorithm [38, 39]. As each Eps correspond-
ings many MinPts, the algorithm calculates the mathematical
expectation of them to get the MinPts list. Then it combines the
Eps list and the Minpts list to a parameter pair list, successively
sets them in pairs as the parameters of DBSCAN, and observe
the number of clusters. Once the number remains the same
after setting three consecutive parameter pairs, the algorithm
records it as the best called N . After that, it continues DBSCAN
clustering until the cluster number changed, and the last pair
of parameters (Epsbest, MinPtsbest) setted before changing is
the optimal.

3.2 Keypoint extraction

We use SIFT to extract the keypoints. Then, to provide enough
basic keypoints, as Li [25] mentioned, we extract and com-
bine the keypoint sets (KPo and KPz ) from the original image
and the scaled image separately, to obtain the union set called
KP.
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FIGURE 2 Framework of SMDAF. In the first step, the SIFT algorithm is used to extract keypoints for a given original image. To gain more keypoints, we
extract them from both the original and the magnified for each image. In the second step, we copy the keypoint set containing descriptors extracted in step 1 and
input them into the proposed second-keypoint matching method. As shown in step 3, we use AdaLAM as the first outpoint filter; after aggregating and
de-duplicating the output, we get filtered discrete points (DP). For the unique filtered set generated from each image, we use the modified KANN-DBSCAN
algorithm called Multi-DBSCAN to find the most suitable hyperparameters(i.e. Eps and Minpts) and execute DBSCAN clustering. After that, we filter out the
clusters whose results are labelled as noise or the clusters with too few points. In step 4, we finally got the mask, which covered the copy–move part, by finding the
convex hulls of remained clusters and padding them

FIGURE 3 Typical examples of image matching (a) and copy–move
forgery detection (b)

Finally, for each keypoint Pj in the keypoint set KP, where
j ∈ {1, 2..., s}, we extract the local binary pattern features, which
weight are rotation invariance and uniformity, to form the 132-
dimensional keypoint feature descriptors.

The details are shown in Formula (1) and Formula (2), where
S is the number of keypoints, and j ∈ (0, S):

KP = {P1, P2, P3, … , PS} (1)

Pj = {PTj ,A j , S j ,D j } (2)

FIGURE 4 Explain of parameters in DBSCAN clustering. The circle
represents 𝜖-neighbourhood, which is limited by its radius Eps. The red dot
ensures that the points in the circle exceed MinPts, the minimum number of
points that can be chosen as a seed in the 𝜖-neighbourhood. These dots are
connected by green lines, meaning they are in the same point set

In Formula (2), PT j is a 1 × 2 matrix, indicating 2D coordi-
nates. A j is a 1 × 1 matrix representing the gradient direction,
which is calculated by SIFT around the neighbourhood of
keypoints. S j is a 1 × 1 matrix means the importance of the
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FIGURE 5 Keypoint matching for single-CMFD

keypoint. Finally, D j is a 1 × 128 eigenvector calculated by
SIFT.

3.3 Second-keypoint matching

After the previous step, the image features are extracted as
keypoints. Inspired by image matching based on keypoint, we
proposed the second-keypoint matching method. It matches
two keypoint sets from identical images: for each keypoint in the
first set, we match the second similar keypoint corresponding to
another set.

To make the matching method suitable for CMFD, which is
divided into the single-CMFD and the multiple-CMFD, we anal-
ysed the distribution of keypoints and found that regions with
dense keypoints often cover the copy–move areas regardless of
single or multi copy–move forgery. The reason can be explained
like this: As the copy–pasted regions must be more similar than
other unforged regions if we ignore distinguishing them, the fea-
ture descriptors of the keypoints extracted from these regions
must be very close. As a result, for a keypoint extracted from
a random copy–move region, we can always find another key-
point closest to the current in other copy–move areas. This
“another keypoint” is embodied as the second similar in the
proposed method.

For single-CMFD, as shown in Figure 5, comparing the sim-
ilarity by feature descriptors, the point PR

0 in the right picture
is the most similar to the current point PL

0 in the left picture,
as shown by the red line. However, it is not suitable for CMFD
because the descriptors of PL

0 and PR
0 must be the same. Since

the points extracted by SIFT are not sensitive to various post-
processing, that is to say, the descriptors corresponding to the
point after post-processing transformation are very close to the
original point’s descriptors. Hence, the second similar descriptor
mentioned above has a high probability of being the copy-
moving part’s corresponding point. In our work, we match such
a second similar keypoint corresponding to the current point
from the right picture, and the matching results are PL

0 and PR
1 .

Things are different for multiple-CMFD, the most common
situation in the CMFD task. It takes multiple forgeries from the
same source region. As is shown in Figure 6, we use S y

x to rep-
resent copy–move areas, where the subscript x can be 0, 1 and
2 to represent a certain area separately, and the superscript L or
R denotes the left image or right image. A keypoint P is selected

FIGURE 6 Keypoint matching for multiple-CMFD

in each S y
x , which superscript and subscript representations

are the same as S y
x . Unlike the single one, there are two fol-

lowing situations for matching keypoints in multi-copy–move
forgery:

(a) PL
0 → PR

1 : PL
0 match PR

1 as the second similar keypoint, but
not vice versa.

(b) PL
0 ↔ PR

1 : The two keypoints match with each other.

To detect multiple-CMFD, in our work, we regard both (a) and
(b) as matching and record all corresponding points.

3.4 Double adaptive filtering

Unlike the other CMFD works, we use AdaLAM for first
adaptive outpoint filtering, separating each copy–move region
by clustering discrete points and refilter by deleting unsatis-
fied clusters.

3.4.1 First adaptive filtering

For the first adaptive outpoints filtering, as shown in Figure 7,
we first take a comprehensive set of hypothesis second matches
from the two similar keypoint sets as input, and each match
is represented as the yellow line in Figure 7(a). Then select
the reasonable propagation hypothesis corresponding to the
rough areas displayed as blue circles in Figure 7(b). As shown
in Figure 7(c), for the set of all hypothesis matches, each
considered region is consistent with the corresponding hypoth-
esis of the same region. Moreover, we only retain the locally
consistent correspondence with sufficient support for affine
transformation, and the results can be seen in Figure 7(d).

As the method outputs two discrete point sets of coordinates,
we overlap the two images to unify the coordinate values. Shown
in Figure 8, the blue dots represent the points in copy–move
regions, and the red points indicate the outliers to be filtered.
After de-duplicate, we finally get a set of discrete points.

3.4.2 Adaptive clustering

The output of the step 2 is a set of discrete points called DP.
As is shown in Figure 9, the red dots indicates DP. There is
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FIGURE 7 The procession of first adaptive outpoints filtering

FIGURE 8 Overlap after first filtering

FIGURE 9 The image marked with DP

an interesting phenomenon discovered that these points in DP
are concentrated, and they exactly cover the whole copy–move
region of an image. Based on this, we intend to separate each
copy–move region by clustering discrete points. An easy way to
realise this is by K -means [40]. However, the K -means needs
to specify the number of clustering K , as the number of image
copy–move regions in CMFD cannot be fixed entirely. Inspired
by the hotspot location mining based on given coordinate’s den-
sity in the data mining field, we use DBSCAN to cluster discrete
points. This algorithm can divide the current discrete points into
flexible standard clusters (marked 1,2,3...) and a noise cluster
(marked −1).

Since each image has its most suitable clustering pattern,
referring to the KANN-DBSCAN algorithm that is introduced
in Section 3.1.2, we modify the part that generates the candi-
date Eps and Minpts lists, develop Multi-DBSCAN to find the
hyperparameter pair list called H , which can be written as

H = {(Eps1,MinPts1), (Eps2,MinPts2)……

(EpsL,MinPtsL)} (3)

For the reason that the algorithm needs to give the range
of cluster numbers, we set the range to be 2–10 after observ-
ing various datasets. Then, we find all hyperparametric cases
as candidates that can achieve 2–10 clustering, arranged from
small to large. Next, we extract the candidate Epsada items and
MinPtsada items from the H and average them to obtain the
adaptive hyperparameters. Mathematically,

Epsada =

∑L
n=1 I n

Eps

L
(4)

MinPtsada =

∑L
n=1 I n

MinPts

L
(5)

It is straightforward but practical to specify the unique
hyperparameter pair and the most likely cluster number during
average because the average result is bound to be biased towards
a cluster with the best parameter pairs in H . Finally, we set the
obtained parameters for DBSCAN clustering.

3.4.3 Refiltering

In this subsection, we find the convex hulls [41] of clusters in
Section 3.4.2 to help us refine the results. Take Figure 10 for
an example: the red polygon is called the convex hull, when it
wraps all the points and ensures it is convex.

All know that the clusters should be filtered if they cannot
satisfy the criteria, so it is needed to re-filter these clusters in
Section 3.4.2. There are two following situations: One is the
cluster composed of less than three points, and the other is that
the whole points in the cluster are collinear. In addition, we also

 17519667, 2022, 13, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/ipr2.12578, W

iley O
nline L

ibrary on [11/11/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



YUE ET AL. 3595

FIGURE 10 The illustration of convex hull

need to filter the lousy cluster results treated as noises, which
usually contain the outpoints that were not filtered out.

Based on these preliminaries above, we find the convex hulls
and refiltering the unsatisfied. Figure 11 shows an experiment
comparing the effects of RANSAC, first adaptive filtering, and
double adaptive filtering. As shown in Figure 11, after apply-
ing RANSAC, noticeably, too few keypoints are left (column
(b)).The first adaptive filtering procedure removes most false-
matching pairs but remains some wrong keypoints (column
(c)).We do not care about matching pairs during refiltering but
the distribution of keypoints. We gather all the points together,
cluster them, and then filter the unsatisfied clusters. Finally, the
proposed filter removes all false keypoints in this experiment
(column (d)).

3.5 Forgery locating

To locate the copy–move forged areas properly, we directly fill
the convex hull areas to cover the copy–move areas. The results
are illustrated in Figure 13, Figures 15 and 16. These figures dis-
play the predicted area’s superposition and masks at the pixel
level. The meaning of colours are as follows: background (blue
areas), correctly detected pixels (green areas), undetected pixels
(red areas), and falsely detected pixels (yellow areas). The rea-
son is that the convex hull of the point set will also wholly draw
out the edge area of the current point set, which can cover the
copy–move forged area.

4 EXPERIMENT

4.1 Setup

4.1.1 Datasets

In order to verify the competitive performance of the method,
three benchmark datasets are used in this experiment: CASIA-
CMFD dataset [42], MICC-F220 dataset [43], CoMoFoD
dataset [44], and Coverage dataset [45]. Table 1 shows the
detailed project information for the dataset.

1. CASIA-CMFD dataset: The dataset has 3274 copy–move
forged images and 7491 authentic images, including var-
ious styles like animals, plants, and patterns. And the
forged images are randomly selected and manipulated from
authentic images.

2. MICC-F220 dataset: The dataset consists of 220 images: 110
are tampered images and 110 are originals. The image reso-
lution varies from 722×480 to 800×600 pixels and the size
of the forged patch covers, on the average, 1.2% of the whole
image.

3. CoMoFoD dataset: The complete CoMoFoD database con-
tains 200 small image categories (512×512 pixels) and 60
large image categories (3000×2000 pixels). Each fake image
underwent six post-processing attacks, including JPEG com-
pression, image blurring, adding noise, brightness changes,
colour reduction, and contrast adjustments. In our experi-
ment, we choose the 200 small image categories to evaluate
the detection capability of the algorithm against various
post-processing attacks, with 5000 images in total. Specific
parameters are shown in Table 3.

4. Coverage dataset: The dataset has 100 pairs of images: 100
standard images similar to copy–move forged images and
100 forged images. Moreover, the forged picture has the
groundtruth of the copy–move area. The purpose of the
dataset is to highlight and solve the ambiguity caused by nat-
ural images’ self-similarity in the popular forgery detection
methods.

4.1.2 Metrics

Since most state-of-the-art approaches use the same metrics,
including Precision, Recall, and F1 score, these metrics are used
to objectively evaluate the CMFD algorithm’s performance,
which are respectively defined as

Precision =
TP

TP + FP
(6)

Recall =
TP

TP + FN
(7)

F1 =
2 × Precision × Recall

Precision + Recall
(8)

Depending on the specific experiments, these indicators will
be used at image-level and pixel-level, which separately measure
the effect of binary classification and forgery locating. We focus
on correctly identifying the image as forged or authentic on
the image-level. At that time, Precision, Recall, and F1 score in
the above definition respectively represent whether the method
can correctly distinguish positive and negative samples. At the
pixel level, we obtain a schematic image by superimposing the
predicted mask with the groundtruth image, which is used to
analyse the performance of forgery locating accuracy. Unlike
the image level, Precision, Recall, and F1 score in the above
definition only applies to negative samples (forged image). In
addition, we averaged the Precision and Recall of each image
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3596 YUE ET AL.

FIGURE 11 Comparing the filtering results of different filters. (a) Forgery image; (b) RANSAC filtering; (c) only first adaptive filtering; (d) double adaptive
filtering

FIGURE 12 Ablation experiments using CoMoFoD dataset. Showing
curves of Precision, Recall, and F1.

during calculation and then used the formula to calculate the
final F1 score.

4.1.3 Settings

All experiments are conducted on a personal computer with
Intel(R) Core (TM) i7-10700k 3.80 GHz CPU, 32 GB RAM

FIGURE 13 Examples from pixel-level ablation experiments

and NVIDIA GTX 2070 GPU. The code is implemented with
Python 3.7 and OpenCV 3.3.1.

4.2 Ablation experiment

In order to improve the effect of first adaptive filtering in
Section 3.3, we examine the influence of parameters set for
AdaLAM on the CoMoFoD dataset at the image-level and pixel-
level. Our experiment found that changing the area-ratio (Ra),
which is responsible for the number of seeds generated during
keypoint matching, has the most significant influence. Generally
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YUE ET AL. 3597

FIGURE 14 The F1 curves using different algorithms with the
CoMoFoD dataset

speaking, the higher the Ra value, the smaller the neighbour-
hood, the more seeds generated, and the more meticulous the
matching. But the results overturned this conclusion. As can be
seen in Figure 12, no matter in image-level or pixel-level, as the
Ra increases from 100 to 1500, the Precision, Recall, and F1
score all rise first and then fall. The reason can be explained
that if the ratio value is too high, the generated seeds will lack
representativeness, and they will be removed during filtering,
thus affecting the prediction results. Then it is observed that the
F1 curve (red line) reaches the maximum when Ra is 500, the
score is 0.852 at the image-level and 0.604 at the pixel-level.
The results in Figure 13 also prove it, as the correctly predicted
green part almost covers all the copy–movement areas. After
ablation, we set 500 as the final ra in our experiment.

In the following sections, the post-ablation method is used
to compare with some existing methods containing Buster-
Net method (2018) [16], HFPM method (2018) [25], and
DOA-GAN (2020) [46]. Moreover, we add the SMDAF-SURF
method for comparing, which uses SURF as the keypoint
extraction algorithm, but the other processions are the same as
our proposed method.

4.3 Simulating real-world conditions

To simulate detecting under the actual situation, which usually
contains extensive data and multiple complexities, we evalu-
ate the metrics on the CASIA-CMFD dataset and MICC-F220
dataset. We choose these datasets for the following reasons:
First, the images in these datasets include various objects like
animals, plants and patterns. The variety is relatively complex
and closer to the real world; Then, the magnitude is relatively
large compared with some other public datasets for CMFD.
Due to the vital metric of detecting a relatively large dataset in
the real world is its classification success rate, and the lack of
groundtruth, we only focus on the image-level in the experi-
mental part. Finally, to ensure the same cardinality of Precision,
Recall, and F1 score when calculating, we regard the image that
will report program error as prediction error here.

From the results in Table 2, the BusterNet methods makes
poor performance at the image-level. The HFPM method grows
to 0.500 and 0.901 of the F1 score. However, it occurs program
errors when detecting 1313 authentic and 838 forgery images.
Another deep learning-based method called DOA-GAN, it
gets better results on CASIA-CMFD dataset, which F1 score
is 0.629. However, the F1 score on MICC-F220 dataset is as
disappointing as BusterNet, which only reaches 0.746. After
using the SMDAF-SURF and the proposed method, the F1
scores significantly improve at the image-level. On the CASIA-
CMFD dataset, the result of SMDAF-SURF improves from
0.629 in DOA-GAN to 0.682, and the proposed method is even
more excellent, achieving 0.714. On the MICC-F220 dataset,
the F1 score of the proposed method can reach 0.904, which
is held a slender lead to HFPM (0.901) and SMDAF-SURF
(0.869).

All in all, in simulating an actual situation to detect copy–
move forged images, the proposed method is more practical as
it has apparent advantages at the image-level.

4.4 Different post-treatment attacks

For testing the effect of methods after post-processing, we take
experiences on the CoMoFoD dataset, which contains bright-
ness change (BC), contrast adjustments (CA), colour reduction
(CR), image blurring (IB), JPEG compression (JC), and noise
adding (NA).

As can be seen from Table 3, the number of detected
images by using SMDAF-SURF and the proposed method
dramatically exceeds that of other methods. In contrast, the pro-
posed method outperforms the SMDAF-SURF method in most
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3598 YUE ET AL.

FIGURE 15 Examples of using different algorithms to predict the post-processing attack image in the CoMoFoD dataset. From top to bottom: (a) forged
images. (b) BusterNet [16]. (c) DOA-GAN [46]. (d) HFPM [25]. (e) SMDAF-SURF. (f) Proposed method

FIGURE 16 Examples obtained on the coverage dataset. From left to
right: original images (a1)∼(a5), forged images (b1)∼(b5), masks output by
BusterNet [16] (c1)∼(c5), by DOA-GAN method [46] (d1)∼(d5), by HFPM
method [25] (e1)∼(e5), by SMDAF-SURF method (f1)∼(f5) and by our
proposed method (g1)∼(g5)

post-processing attacks, expecting several attacks (NA1, NA2,
NA3, BC3, JC6, JC9). Moreover, the proposed method achieves
the highest recall rate and F1 score at the pixel-level.

The F1 curves at the pixel-level are shown in Figure 14, which
exposes the superiority of the proposed method (red line) in the
face of most post-treatment attacks. Nevertheless, it points out
that for image blurring, as the size of average filter increasing,

TABLE 1 Datasets

Dataset Operation Sum

CASIA-CMFD None 7491

Forgery 3274

MICC-F220 None 110

Forgery 110

CoMoFoD None 200

Forgery 200

Forgery+JPEG compression 1800

Forgery+image blurring 600

Forgery+noise adding 600

Forgery+brightness change 600

Forgery+colour reduction 600

Forgery+contrast adjustments 600

Coverage None 100

Forgery 100

from 3×3 to 7×7, the F1 score using keypoint-based methods
decline over 15% on average (24.4% for SMDAF-SURF, 18.5%
for the proposed and 9.7% for HFPM). In contrast, the Buster-
Net only declines 5.4% and the DOA-GAN declines 4.8%.
Then, adding noises at different scales also affects the keypoint-
based methods a lot. Take the proposed method as an example,
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YUE ET AL. 3599

TABLE 2 Using different algorithms for Image detection results of
CASIA-CMFD dataset and MICC-F220 dataset(The results are divided into
this: CASIA-CMFD/MICC-F220)

Image-level

Methods

Detected

images P R F1

BusterNet[16] 10,765/220 0.554/0.664 0.453/0.863 0.498/0.751

HFPM[25] 8614/220 0.529/0.853 0.474/0.954 0.500/0.901

DOA-GAN[46] 10,765/220 0.585/0.679 0.680/0.863 0.629/0.746

SMDAF-SURF 10,765/220 0.775/0.811 0.609/0.936 0.682/0.869

Proposed 10,765/220 0.807/0.867 0.640/0.945 0.714/0.904

the F1 score increases rapidly as the noise addition reduces, from
0.26 to 0.528, while the deep learning-based methods are stable.

BusterNet is from 0.358 to 0.392, and the DOA-GAN is from
0.388 to 0.384.

From the examples in Figure 15, after using the deep
learning-based methods (BusterNet and DOA-GAN), there are
many undetected pixels (red areas) and falsely detected pixels
(yellow areas) in the pictures, meaning this method lacks at the
pixel-level. For the keypoint based methods, like HFPM, sev-
eral pictures display only blue and red, which indicates that
the method failed to detect the forged images at the image-
level, and there are many falsely detected pixels (yellow areas)
in the pictures meaning over-locating, which declines the F1
score performance at the pixel-level. As for the SMDAF-SURF
method, the performance is close to the proposed method but
still unsatisfying.

In general, the proposed method is more robust than
others in the face of post-processing attacks. Although the

TABLE 3 Specific parameters of CoMoFoD dataset and the number of correctly detected images using different algorithms

Methods

Operations Parameters Flags Num

Buster

Net [16]

HFPM

[25]

DOA-GAN

[46]

SMDAF-

SURF Proposed

Brightness change Brightness ranges (0.01, 0.95) BC1 200 135 145 158 186 188

Brightness ranges = (0.01, 0.9) BC2 200 135 142 151 181 186

Brightness ranges = (0.01, 0.8) BC3 200 132 135 132 178 176

Contrast adjustments Adjustment ranges = (0.01, 0.95) CA1 200 136 152 163 185 192

Adjustment ranges = (0.01, 0.9) CA2 200 137 148 169 185 192

Adjustment ranges = (0.01, 0.8) CA3 200 135 148 169 183 189

Colour reduction Intensity levels per each colour channel = 32 CR1 200 135 148 151 184 189

Intensity levels per each colour channel = 64 CR2 200 139 148 151 186 189

Intensity levels per each colour channel = 128 CR3 200 134 148 146 187 187

Image blurring Average filter = 3 × 3 IB1 200 137 142 173 176 192

Average filter = 5 × 5 IB2 200 133 138 125 158 179

Average filter = 7 × 7 IB3 200 123 116 128 128 162

JPEG compression Quality factor = 20 JC1 200 144 106 118 148 159

Quality factor = 30 JC2 200 139 114 132 162 171

Quality factor = 40 JC3 200 130 110 121 167 167

Quality factor = 50 JC4 200 130 120 121 177 172

Quality factor = 60 JC5 200 132 117 118 176 170

Quality factor = 70 JC6 200 136 122 115 179 169

Quality factor = 80 JC7 200 131 129 129 181 183

Quality factor = 90 JC8 200 137 143 132 183 187

Quality factor = 100 JC9 200 133 122 126 183 182

Noise adding Mean value 𝜇 = 0, variance 𝜎2 = 0.009 NA1 200 139 96 154 132 121

Mean value 𝜇 = 0, variance 𝜎2 = 0.005 NA2 200 133 78 140 148 143

Mean value 𝜇 = 0, variance 𝜎2 = 0.0005 NA3 200 137 124 131 162 173

None - F 200 136 147 155 184 190

Sum - - 5000 3368 3181 3508 4319 4418

Pixel-level Precision - - - 0.302 0.571 0.415 0.420 0.468

Recall - - - 0.494 0.398 0.393 0.510 0.572

F1-score - - - 0.373 0.468 0.404 0.457 0.511
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TABLE 4 Results of coverage dataset

Image-level Pixel-level

Methods

Detected

images P R F1 P R F1

BusterNet[16] 200 0.508 0.940 0.660 0.624 0.652 0.638

HFPM[25] 194 0.635 0.750 0.688 0.595 0.595 0.595

DOA-GAN[46] 200 0.509 0.810 0.625 0.591 0.530 0.559

SMDAF-SURF 200 0.568 0.870 0.687 0.490 0.684 0.571

Proposed 200 0.583 0.910 0.711 0.606 0.768 0.678

keypoint-based methods are not as stable enough as the deep
learning-based methods when facing image blurring and noise
adding, the proposed method is superior to other existing
keypoint-based methods.

4.5 Distinguishing the similar but authentic
images

To measure whether the algorithms can correctly detect authen-
tic images similar to a copy–move image and accurately point
out the forged part, we take experiences on the Coverage dataset
containing copy–move forged images and their originals with
similar but genuine objects.

It can be seen from Figure 16 that the effect in pixel-level
using different methods on the Coverage dataset is similar to
the effect on the CoMoFoD dataset. It shows the superiority
of the proposed method on different datasets. From Table 4,
the BusterNet method achieves the highest recall rate and accu-
racy rate at the image level, but there are problems in the
detection accuracy rate at the image level. The accuracy at the
image level of 0.508 indicates that this method cannot distin-
guish forged images from raw images that are very similar to
copy–move. The HFPM method has flaws in detecting images,
which can only detect 97 pairs out of 100 pairs, and program
errors may occur when detecting No.9, No.13, and No.36 image
pairs. When comparing with other methods on image-level and
pixel-level, it is needed to keep up with the number of detected
images in total by different methods. Thus the three image pairs
are processed as undetected when calculating the Precision,
Recall, and F1 score. Moreover, although the HFPM method
has the highest value in image-level accuracy, the proposed
method is superior to the HFPM method in other aspects. After
using the DOA-GAN, the result at the image level is similar
to BusterNet but gets worse at the pixel level. And the perfor-
mance of SMDAF-SURF are inferior to the proposed method
in all metrics.

In conclusion, the proposed method can better distin-
guish confusing images at image-level and pixel-level after
taking experiments.

5 CONCLUSION

The paper proposes a novel keypoint-based method for CMFD
called SMDAF, consisting of (SM) and (DAF), which adaptively

filter false keypoint matches according to the distinctive distri-
bution of each image. The proposed second-keypoint matching
method (SM) is used to match more SIFT keypoints and can
solve both the single and multiple CMFD problems. The pro-
posed DAF can filter the false keypoint matches more adaptively
and locate the forgery areas more precisely than existing filtering
methods. Compared with three SOTA methods for CMFD on
four different benchmark datasets, the SMDAF method signifi-
cantly provides competitive results. First, the proposed method
is more practical as it reaches the highest F1 scores for binary
classification on the CASIA-CMFD and MICC-F220 datasets.
Second, in the experiments on the CoMoFoD dataset, although
the deep learning-based method is more stable when facing
post-processing attacks, the proposed method has better perfor-
mance on the entire dataset, and the F1-score at the pixel level
achieves 0.511, while the SOTA methods cannot exceed 0.5.
Besides, it can also better distinguish authentic images similar to
copy–move images on the Coverage dataset. Extensive experi-
ments show that this approach has the advantages of filtering
false keypoint matches more adeptly and locating the forgery
areas more precisely.

In future work, we will make improvements in the follow-
ing two aspects. One is to study the extraction of keypoints,
and the other is to design better forgery localisation algo-
rithms to locate the copy–paste regions precisely. In addition,
the stability of deep learning-based methods against post-
processing attacks has attracted our attention. We will also
focus on the combination of keypoint-based and deep-learning
methods.
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