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Abstract. Previous studies have revealed that artificial intelligence
(AI) systems are vulnerable to adversarial attacks. Among them, model
extraction attacks fool the target model by generating adversarial exam-
ples on a substitute model. The core of such an attack is training a
substitute model as similar to the target model as possible, where the
simulation process can be categorized in a data-dependent and data-free
manner. Compared with the data-dependent method, the data-free one
has been proven to be more practical in the real world since it trains
the substitute model with synthesized data. However, the distribution of
these fake data lacks diversity and cannot detect the decision boundary
of the target model well, resulting in the dissatisfactory simulation effect.
Besides, these data-free techniques need a vast number of queries to train
the substitute model, increasing the time and computing consumption
and the risk of exposure. To solve the aforementioned problems, in this
paper, we propose a novel data-free model extraction method named
SCME (Self-Contrastive Model Extraction), which considers both the
inter- and intra-class diversity in synthesizing fake data. In addition,
SCME introduces the Mixup operation to augment the fake data, which
can explore the target model’s decision boundary effectively and improve
the simulating capacity. Extensive experiments show that the proposed
method can yield diversified fake data. Moreover, our method has shown
superiority in many different attack settings under the query-limited sce-
nario, especially for untargeted attacks, the SCME outperforms SOTA
methods by 11.43% on average for five baseline datasets.

Keywords: Adversarial Attacks · Model Extraction Attacks ·
Black-Box Attacks · Model Robustness · Information security

1 Introduction

Recently, Trusted AI, which contains fairness, trustworthiness and explainabil-
ity, has received increasing attention and plays an essential role in the AI
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Fig. 1. Synthetic example distribution,
decision boundaries and whether the attack
is successful. Top left: bad synthetic exam-
ple distribution failed to fit the target
model decision boundary. Bottom left:
unfitting of the decision boundary leads
to attack failure. Top right: good exam-
ple distribution and decision boundary fit.
Bottom right: good decision boundary.

development process. The security of
the AI models, however, is being
doubted and has bought concerns
in academia and industry. A lot of
research has shown that AI mod-
els (including Machine Learning (ML)
models and Deep Learning (DL) mod-
els) are vulnerable to adversarial
examples [2], which are crafted by
adding a virtually imperceptible per-
turbation to the benign input but
can lead the well-trained AI model to
make wrong decisions. For example, in
the physical world, the attackers can
maliciously alter traffic signs by stick-
ing a small patch [12], changing the
content style [4] and shooting a laser
on it [5]. Although these modifica-
tions do not affect human senses, but
can easily trick autonomous vehicles.
Therefore, it is imperative to devise
effective attack techniques to identify
the deficiencies of AI models beforehand in security-sensitive applications [13].

Existing adversarial attack methods on DL models can be categorized into
white-box attacks and black-box attacks. In the white-box settings, the attackers
can access the whole information of the target model, including weights, inner
structures and gradients. In contrast, in the black-box one, the attackers have
no permission to access the models’ details but the final output [3,9]. With
such rules, it is clear that black-box attacks are more challenging but practical
in the physical world, where the attacker lacks details of the target models.
To attack DL models in black-box settings more effectively, model extraction
attacks have been proposed [17], which is implemented by training a substitute
model and generating adversarial examples on such model to attack the target
model successfully.

Most of the previous model extraction attacks [14,15] concentrates on train-
ing the substitute model by querying the target model with real data, called
data-dependent model extraction. However, it is infeasible to the physical world,
where the adversary can not access the models’ training data. As the counter-
part, the data-free model extraction attack solved this problem by synthesizing
fake data [20,23]. In this scenario, the attackers use generators to synthesize the
fake data to train substitute models. For launching attacks with a high success
rate, as shown in Fig. 1, the decision boundary of the substitute model should
maintain a very high similarity to the target black-box model. Besides, training
the substitute model with synthetic data is challenging to the problem of How
to generate valuable synthetic data for the substitute model training? Generally
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speaking, the synthetic examples should have the following two properties: 1)
inter-class diversity and 2) intra-class diversity. The inter-class diversity
means that the synthetic examples’ categories classified by the target model
should contain all the expected classes, while the intra-class diversity indicates
that the examples should differ from each other, even they belong to the same
category. However, existing methods [18,20,22,23] still suffer from the following
two challenges: 1) They only consider inter-class diversity but ignore intra-class
diversity, resulting in synthetic data not serving as well as real data. 2) The other
is that the query data are generated in the substitute model’s training process.
However, once the substitute model is not well-trained, it can hardly provide the
effective target model’s decision information.

To solve these challenges mentioned above, in this paper, we propose a novel
data-free model extraction method, named Self-Contrastive Model Extraction
(SCME for short). SCME introduces the idea of contrastive learning [1] and
proposes a self-contrastive mechanism to guide the training of the generator.
Specifically, we design a self-contrastive loss to enlarge the distance of the sub-
stitute model’s latent representation. Benefiting from this, the generator will be
encouraged to synthesize more diversified fake data. Furthermore, SCME intro-
duces the Mixup operation to interpolate two random images into a single one
to build the query examples, which can improve the efficiency of the substitute
model in learning the target model’s decision boundaries in a model-independent
manner. Extensive experiments illustrate SCME can synthesize fake data with
diversity and improve the attack performance. Our contributions are summa-
rized as follows:

– We propose a novel data-free model extraction method, called SCME, to
generate efficient fake data for the substitute model training under query-
limited settings.

– We use a self-contrastive mechanism to guide the generator to synthesize the
fake data with inter- and intra-class diversity to help the substitute model
imitate the target model efficiently.

– We introduce the Mixup into SCME, which can build fake data in a model-
independent manner, to detect decision boundaries of the target model effec-
tiveness and further help the imitating processing.

– Extensive empirical results show the SCME’s superiority in the synthetic
diversified fake data and the adversarial examples’ attack performance in
query-limited situations.

2 Related Work

Previous researches contend that the DL models are sensitive to adversarial
attacks, which can be classified into white-box and black-box. In white-box set-
tings, the attackers can generate adversarial examples with a nearly 100% attack
success rate because they can access the target model. The black-box attack,
however, is more threatening to the DL models in various realistic applications
because they do not need the models’ details. Among them, the model extraction
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attack [21] has received much attention recently due to its high attack perfor-
mance.

The success of model extraction attacks relies heavily on adversarial exam-
ples’ transferability, which means the adversarial examples generate on model A
can also attack model B successfully. To implement such an attack, the attacker
first trains a surrogate local model by simulating the target models’ output.
When the surrogate model is well-trained, it will have the same decision bound-
ary as the target model, i.e., output the same results for the same input; this imi-
tation process is called model extraction. However, due to the data bias between
the query data used for surrogate model training and the real data used for the
target model training, creating a valid query dataset is the crucial point of model
extraction attacks. Papernot et al. [15] first used adversarial examples to query
the target model for model extraction. However, due to the surrogate model is
not well-trained, the adversarial examples generated on it cannot perform well
in the imitating process. Orekondy et al. [14] propose the Knockoff to try to find
valid query examples in a huge dataset, e.g., ImageNet [8], and adopt an adap-
tive strategy in the extraction process. Zhou et al. [23] proposed DAST, which is
the first work to use a generator-based data-free distillation technique in knowl-
edge distillation for model extraction. Later, subsequent studies have improved
this approach to achieve better results [18]. However, the generator-based app-
roach cannot obtain sufficient supervised information as in white-box knowledge
distillation, leading to a huge number of queries and low attack results.

Therefore, the block-box attack with adversarial examples’ transferability
poses the request to guarantee that the local model is highly similar to the
target model. To achieve this goal, we know from previous studies that model
extraction can steal the target model from a decision boundary perspective,
even in a data-independent way. However, the previous data-free works can not
guarantee the synthetic data’s diversity and need a massive number of queries
to the target model. Hence, we are well-motivated to develop a better model
extraction strategy adapted to data-free settings for carrying out attacks with
high performance. Besides, it can improve the diversity of the generated fake
data to be suitable for query-limited settings.

3 Preliminary

3.1 Adversarial Attack

Given a classifier F(·) and an input x with its corresponding label y, we have
F(x) = y. The adversarial attack aims to find a small perturbation δ added to
x, so the generated input x′ misleads the classifier’s output. The perturbation
δ is usually constrained by Lp-norm (p = 1, 2, ...,∞), i.e., ‖δ‖p ≤ ε. Then, the
definition of adversarial examples x′ can be written as:

F(x′) �= ytrue, s.t. ‖x′ − x‖p ≤ ε, (1)

where ε is the noise budget, ytrue is the ground-truth label of example x.
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Fig. 2. Framework of SCME, where LG consisting of inter- and intra-diverse loss.

3.2 Contrastive Learning

Contrastive learning models usually consist of two portions: self-supervised train-
ing in the upstream network and supervised fine-tuning in the downstream net-
work. The upstream network f(·) aims to maximize the paired instance by aug-
menting the same data in different ways in the learned latent space while min-
imizing the agreement between different instances. Given a batch of examples
{xN} without ground-truth labels, the random data transformation T takes each
example x in {xN} to a paired augmented data copies xi and xj , resulting in
2N augmented examples. The trained upstream network f(·) encodes the paired
copies to latent vectors zi and zj . n SimCLR [1], the contrastive loss can be
formulated as:

�i,j = − log
exp (sim (zi,zj) /τ)

∑2N
k=1 1[k �=i] exp (sim (zi,zk) /τ)

, (2)

where the zi and zj are the latent vectors of positive augmented examples, and
zk indicts the latent vector of negative examples from a different class. The
sim(·) is a similarity function, such as cosine similarity loss, 1 is the indicator
function, and τ is the temperature coefficient. A well-trained upstream network
f(·) can extract effective features and use them in the downstream network,
which usually is a simple MLP network, mapping the latent vectors to different
classes through supervised learning.

4 Methodology

4.1 Overview

In this part, we illustrate the framework of our proposed data-free SCME in
Fig. 2, which contains the following steps: 1) Synthesised Examples Generation
and 2) Model Extraction. For step 1), we use a generator G(·) to generate the
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Fig. 3. The calculation process of intra-class diverse loss. C is the number of classes.

fake data X . In step 2), we input the X into both substitute model Fsub and
target model Ftgt(·) to minimize the difference of their outputs. Notably, Fsub(·)
in SCME consists of upstream encoder network Fup(·), a feature extraction net-
work, projector network Fdown(·), and a classifier. Mathematically, the Fsub(·)
can be written as:

Fsub(x) = Fdown(Fup(x)), (3)

where x is an arbitrary input example.
Based on the two steps mentioned above, the Fsub can imitate the Ftgt in

a data-free manner. Finally, we can generate adversarial examples by attacking
Fsub, and further attack the target model Ftgt successfully.

4.2 Intra- and Inter-class Diverse

As mentioned above, X should have both inter-class diversity and intra-class
diversity to help the surrogate model training. Regarding this, as Fig. 3 show,
we propose a self-contrastive loss to guide G(·) in the X generation. Inspired by
the self-supervised loss in contrastive learning, we design a self-contrastive loss
in SCME. Firstly, SCME uses the generator G(·) to sample a batch of random
noise N = {n1, n2, · · ·, nB} to generate corresponding synthesize examples X =
{x1, x2, · · ·, xB}. SCME puts the X into the feature extraction network Fup(·)
and gets the latent vectors z. Then, SCME calculates the self-contrastive intra-
class diverse loss Lintra by expanding the distance of each hidden vector zi in z.
The self-contrastive loss can be formulated as:

Lintra = log

B∑

i

B∑

j

1[i�=j] · exp(sim(zi, zj)), (4)

where B is the batch size, 1 is the indicator function and sim(·) is a similarity
function.

In the synthesised examples generation, the loss function LG of generator
G(·) contains inter-class diversity loss Linter and intra-class diversity loss Lintra.
To generate inter-class diversity examples, we use the inter-class information
entropy to guide the generator G(·). That is, SCME randomly sets a batch of
target label ytgt and reduces the entropy between ytgt and the substitute model’s
output of the generated examples X . Mathematically, the inter-class loss function
is:

Linter =
B∑

i=1

Fsub(Xi)log[Fsub(Xi)], (5)

where B is the batch size.
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4.3 Model-Independent Boundary Example

Although the synthesis examples have been generated, however, they are still
challenging to detect the target model’s decision boundary adequately for sub-
stitute model training, resulting in a low attack performance. To solve this prob-
lem, we further modify the boundary examples by the Mixup augmentation to
improve the substitute model’s training efficiency. Specifically, SCME randomly
selects two synthesized examples Xi and Xj first and then uses the Mixup to fuse
them together to get the new boundary examples X̂ , the process can be written
as follows:

X̂ = λXi + (1 − λ)Xj , (6)

where the λ ∈ [0, 1] is the mix weight and randomly sampled from β distribution.

4.4 Objective Function

By combining the above inter-class diversity loss Linter and the intra-class diver-
sity loss Lintra, we obtain the generate loss LG as the objective function for
training the generator:

LG = Lintra + αLinter, (7)

where the α is the hyperparameter to adjust the weight of each loss.
Once the intra-class and inter-class diverse examples are generated, we input

them into both substitute model Fsub(·) and the target model Ftgt(·) to minimize
the distance between their outputs. To craft more suitable examples for training
the substitute model and make its decision boundary close to the target model in
the training process, we first craft the generated examples by Mixup operation
to get the boundary examples X̂ . Mathematically, the objective loss function
Ltrain of training substitute model is:

Ltrain =
B∑

i=1

d(Fsub(X̂ ),Ftgt(X̂ )), (8)

where the distance function d(·) is the Cross-Entropy loss in the hard label
scenario and is the Mean Square Error loss in the soft label scenario.

Once the surrogate model is well-trained, we are able to generate adversarial
examples on the substitute model and further attack the target black-box model.

5 Experiments

5.1 Setup

Datasets: We consider five benchmark datasets, namely MNIST [11], Fashion-
MNIST [19], CIFAR-10 [7], CIFAR-100 [7], Tiny-ImageNet [10] for comprehen-
sive experiments.
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Table 1. Attack performance on MNIST and Fashion-MNIST Datasets.

Dataset Methods Targeted, Hard Label Untargeted, Hard Label Targeted, Soft Label Untargeted, Soft Label

FGSM BIM PGD FGSM BIM PGD FGSM BIM PGD FGSM BIM PGD

MNIST JPBA 3.89 6.89 5.31 18.14 23.56 20.18 4.29 7.02 5.49 18.98 25.14 21.98

Knockoff 4.18 6.03 4.66 19.55 27.32 22.18 4.67 6.86 5.26 21.35 28.56 23.34

DaST 4.33 6.49 5.17 20.15 27.45 27.13 4.57 6.41 5.34 25.36 29.56 29.14

Del 6.45 9.14 6.13 22.13 25.69 23.18 6.97 9.67 6.24 24.56 25.35 25.28

EBFA 14.45 28.71 9.86 39.73 57.54 52.73 16.99 36.82 14.55 36.45 58.48 48.46

SCME 9.98 9.96 10.04 63.45 74.51 78.47 10.05 10.00 10.04 72.46 78.54 82.54

Fashion-MNIST JPBA 6.45 8.46 7.57 24.22 30.56 30.11 6.89 8.56 7.56 26.23 31.35 31.11

Knockoff 6.34 8.35 7.32 28.19 36.88 35.92 6.65 8.98 8.23 30.21 36.94 36.22

DaST 5.38 7.18 6.53 30.45 36.17 34.23 5.33 7.46 7.84 32.14 37.34 34.91

Del 3.89 8.19 7.47 28.14 34.14 32.45 3.23 8.59 8.11 31.43 36.26 33.87

EBFA 30.08 76.46 32.42 84.85 80.93 89.30 29.11 66.02 43.56 75.19 79.94 79.30

SCME 31.82 70.79 70.01 82.26 84.76 85.11 32.14 72.07 72.07 82.58 85.46 85.86

Table 2. Attack performance CIFAR-10 and CIFAR-100 Datasets.

Dataset Methods Targeted, Hard Label Untargeted, Hard Label Targeted, Soft Label Untargeted, Soft Label

FGSM BIM PGD FGSM BIM PGD FGSM BIM PGD FGSM BIM PGD

CIFAR-10 JPBA 6.32 7.70 7.92 27.82 33.23 31.70 7.28 8.56 7.64 28.77 33.38 31.96

Knockoff 6.26 7.02 7.04 29.61 31.86 30.68 6.46 8.27 7.35 30.02 31.98 30.35

DaST 6.54 7.81 7.41 27.61 34.43 26.99 8.15 8.40 8.26 27.58 34.75 27.47

Del 7.14 7.44 6.95 25.33 30.45 30.34 7.86 8.29 7.17 26.38 31.53 31.47

EBFA 14.57 16.95 12.27 86.13 87.02 84.32 31.54 13.93 69.14 83.89 87.68 85.11

SCME 16.53 14.76 14.22 91.01 91.56 91.33 16.22 15.14 15.31 91.23 91.62 91.66

CIFAR-100 JPBA 4.35 6.20 6.17 33.58 38.54 37.08 5.73 7.50 6.41 34.21 39.12 37.31

Knockoff 4.40 5.86 5.25 34.84 36.92 36.34 4.88 7.05 6.18 36.01 37.61 35.47

DaST 4.97 6.19 5.92 33.57 39.86 32.71 6.38 7.04 7.01 32.80 40.34 32.78

Del 5.38 5.72 5.69 30.80 35.63 36.15 6.30 6.53 5.23 31.64 36.63 37.44

EBFA 16.64 16.88 12.77 78.61 91.31 91.21 7.91 16.15 12.54 83.69 94.53 94.14

SCME 18.46 14.23 13.13 94.81 95.40 95.32 10.50 16.02 15.49 94.72 95.09 94.95

Models: For MNIST and Fashion-MNIST datasets, we use a simple network as
the target model, which has four convolution layers and pooling layers and two
fully-connected layers. For CIFAR-10 and CIFAR-100, we use the ResNet-18 [6]
as the target model. For Tiny-ImageNet, we use the ResNet-50 [6] as the target
model. The substitute model for all the datasets is the VGG-16 [16].

Baselines: To evaluate the performance of SCME, we compare it with the data-
dependent method, JPBA [15], Knockoff [14], and data-free methods, DAST [23],
Del [18], EBFA [22].

Training Details: SCME and the baseline methods are trained with Adam
optimizer with batch size 256. For the generator in SCME, we use an initial
learning rate of 0.001 and a momentum of 0.9, and for the substitute model, we
set the initial learning rate as 0.01 and momentum as 0.9. Furthermore, we set
the maximal query times as 20 K, 100 K and 250 K for the MNIST dataset,
CIFAR dataset and the Tiny-ImageNet dataset, respectively.

Metrics: We utilize three classical attack methods, which include FGSM, BIM
and PGD, to generate adversarial examples for the surrogate model. For MNIST
and Fashion-MNIST, we set perturbation budget ε = 32/255. And for CIFAR-
10, CIFAR-100 and Tiny-ImageNet, we set ε = 8/255. In the untargeted attack
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Table 3. Attack performance on Tiny-ImageNet Dataset.

Hard Label Soft Label

Methods FGSM BIM PGD FGSM BIM PGD

JPBA 15.37 25.16 14.23 26.54 28.91 26.83

Knockoff 22.33 21.39 11.26 29.99 27.64 26.17

DaST 16.23 18.26 15.86 28.81 29.37 26.51

Del 28.31 32.54 29.73 34.28 38.49 36.72

EBFA 78.29 81.12 78.23 80.26 85.32 78.29

SCME 90.16 90.25 89.72 96.44 96.29 96.32

Fig. 4. Synthesised examples without (left) and with (right) data augmentation.

scenario, we only generate adversarial examples for the images which can be
classified correctly by the victim model, while in targeted attacks, we only gen-
erate adversarial examples for the images which are not classified to the specific
wrong labels. The attack success rate (ASR) is calculated by:

ASR =

{
1
N

∑N
i=1[f(xadv

i ) �= yi], for untargeted
1
N

∑N
i=1[f(xadv

i ) = yt], for targeted
(9)

where N is the total number of generated adversarial examples.
Besides, for given a batch of query examples X , we input them to the target

model Ftgt to get the output of each example and calculate its Boundary
Values (BV) to verify whether the query samples are close to the decision
boundary of the target model or not. The proposed BV can be calculated as
follows:

BV =
B∑

i=1

(p(Ftgt(Xi))top1 − p(Ftgt(Xi))top2), (10)
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where p is the Soft-max function, the top1 and top2 are the maximum value
and sub-maximal value in the output probability vector, and the B is the total
example counts.

5.2 Attack Performance

Experiments on MNIST and Fashion-MNIST: We report the ASR under
targeted and untargeted attacks for both label-only and probability-only sce-
narios. As shown in Table 1, the ASR of SCME is much higher than the SOTA
baselines on MNIST and Fashion-MNIST datasets. Obviously, our method can
obtain higher ASR than other baselines in most cases with a small number of
queries (here is 20K). This phenomenon shows that the proposed method is more
applicable to the real world than the baselines.

Fig. 5. The T-SNE of original CFIAR-10 data (left), synthetic data by EBFA (middle)
and synthetic data by SCME (right).

Experiments on CIFAR-10, CIFAR-100 and Tiny-ImageNet: We further
investigate the performance of our method on complex datasets. From the results
shown in Tables 2 and 3, our method achieves the best attack performance over
probability-only and label-only scenarios under all datasets. In addition, com-
pared to the strong baselines EBFA, our method still outperforms it significantly.
Although the number of categories directly affects the training of the substitute
model, our method still achieves a very high ASR on the CIFAR-100 and Tiny-
ImageNet datasets, which have 100 categories and 200 categories, respectively.
On the Tiny-ImageNet dataset, our method even achieves the highest ASR of
96.44% in the soft label setting. These improvements effectively demonstrate the
superiority of the proposed SCME.
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Table 4. Boundary value of EBFA and SCME.

Methods EBFA SCME

w.o. aug w. aug w.o. aug w. aug

Boundary Values 9150.8699 9010.6072 9469.6909 8717.2107

Fig. 6. The ablation results of model accuracy (left) and model ASR (right), where
“- L sc” means without self-contrastive loss, and “- Mixup” means without Mixup
operation.

5.3 Evaluation on Data Diversity

To evaluate the generated data’s diversity of the strong baseline EBFA and
the proposed SCME, we generated 10,000 examples and fed them into the same
model trained on the CIFAR-10 dataset to get the predicted labels. The results in
Fig. 4 show the data with data augmentation or not. The results show most of the
examples generated by EBFA were classified as “deer”, while synthetic examples
by SCME have preferable inter-class diversity. Further, we plot the T-SNE for
real data and synthetic examples generated by EBFA and SCME, respectively,
in Fig. 5. The results illustrated that our method generates examples similar to
the real data, i.e., with more intra-class diversity. These phenomena strongly
support that our method can generate data with high inter- and intra- diversity.

5.4 Evaluation on Boundary Value

To verify whether the query examples are closer to the decision boundary of
the target model, we compared the BV of 10,000 examples generated by EBFA
and SCME. The results in Table 4 show although EBFA achieves smaller BV
without data augmentation, SCME can achieve substantially lower BV with
data augmentation. This further demonstrates the effectiveness of the Mixup
operation in SCME for generating query examples close to the decision boundary.
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5.5 Ablation Study

To investigate the contribution of Self-Contrastive loss LG (described in Sect.
4.2 and Mixup operation, we plot the model classification accuracy (ACC) and
the model ASR in the model training process. The results in Fig. 6 shows that
using both LG and Mixup augmentation performs best on both ACC and ASR,
besides the model training convergence faster. For instance, the standard SCME
is close to convergence with 6K queries, and the ASR is also beyond 80%.

6 Conclusion

In this paper, we proposed a novel data-free model extraction attack, namely
SCME, to boost the attack performance under query-limited settings. Specifi-
cally, we first design a self-contrastive loss to guide the generator to synthesize
the query data with high inter- and intra-class diversity. Besides, we introduce
the Mixup augmentation to combine two generated query samples as the final
query input to obtain effective decision boundaries and further help the simula-
tion process of the substitute model. Extensive empirical results show that the
proposed SCME framework can achieve SOTA attack performance.
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