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Abstract—The robustness and security of deep neural network
(DNN) models have received much attention in recent years. In-
depth research on adversarial example generation methods that
make DNN models make wrong judgments and decisions will
facilitate further research on more comprehensive and practical
adversarial defense methods. Most existing adversarial example
generation methods focus too much on attack performance and
design adversarial noise at the pixel level, resulting in the
generated adversarial examples with redundant noise and evident
perturbations. In this paper, we try to find the well-designed
perturbations at the feature-level and propose a novel deep
reversible network-based imperceptible adversarial examples
generation method called RIA. Experimental results show that
RIA can obtain more natural adversarial examples without losing
attack performance and reducing redundant noise based on well-
designed feature maps. To the best of our knowledge, in the white-
box attack method research, this work is the first attempt to
directly add perturbations to feature maps and use an reversible
network to generate adversarial examples based on the perturbed
feature maps.

Index Terms—Adversarial Feature Map, Adversarial Attack,
Imperceptible Adversarial Example, Reversible Network

I. INTRODUCTION

Various deep neural network (DNN) models [1, 2] have been

widely used in computational vision-related fields, such as

object detection [3], autonomous driving [4], etc. One concern,

however, is that these deep learning models can be fragile.

Slight alterations to the original image could lead to erroneous

predictions or decisions, which could be fatal for safety-related

applications such as autonomous driving. For example, self-

driving cars misjudged road signs with graffiti, causing severe

traffic accidents. Issues like this would pose a significant threat

to public safety.

In recent years, more and more scholars have paid attention

to the security and robustness of deep learning models. One

of the common ideas is to conduct in-depth research on adver-

sarial example [5] generation methods (i.e., adding subtle and

imperceptible perturbations to the original images) to improve

attack performance, thereby motivating more comprehensive

and effective adversarial defensive methods.

Among the existing research on how to design adversarial

examples, the most famous is the white-box attack method

*Corresponding author

(a) Original (b) Ours (c) PGD (d) MIFGSM (e) ILA

Fig. 1. Comparison of the visual performance of the adversarial examples
generated by four different attack methods: (a) The original image, (b) Our
RIA method, (c) PGD, (d) MIFGSM, and (e) ILA(Intermediate level attack).

[6, 7], that is, generating adversarial examples when know-

ing the model structure, parameters, and even the training

datasets to assess the model’s vulnerability. For example, some

gradient-based attacks [6, 7] calculate adversarial noise based

on the gradient information of the target model and then apply

the well-designed perturbations to the original images at the

pixel-level to synthesize adversarial examples. Some interme-

diate layer-based attacks [8] make adversarial examples more

transferable by utilizing the models’ intermediate layers to

calculate the adversarial perturbations.

However, the above methods suffer from two flaws: 1) The

perturbation of adversarial samples is often directly added

to the pixel-level, which means that adversarial examples

are unnatural to the naked eyes and are not concealed. 2)

Adding noise to the whole image may be redundant, and in

real attack scenarios, adversarial examples may only perturb

local regions. Many works in existing research [9, 10] have

demonstrated the possibility of making adversarial examples

only by perturbing local regions.

In this paper, we attempt to construct more imperceptible

adversarial examples and reduce the redundancy of noise by

combining a deep reversible residual network [11] and guid-

ance information to perturb the original image from a feature

space representing essential information. More specifically, the

deep reversible residual network, consisting of feature extrac-

tion and recovery module, enables the interconversion between

image and feature map. The proposed method can benefit from

the transforming capability of the deep reversible network and

obtain the adversarial examples from the well-disturb feature

map. The guidance information, such as classification loss, can

point out the direction of the noise optimization. Compared

with the previous approaches, the proposed method gener-
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ates the adversarial examples by perturbing the feature map

directly. Empirically, the optimal perturbations in pixel-level

transformed from the feature-level are concentrated on the

critical areas. It has significantly guaranteed the image quality

and invisibility of the adversarial examples, as shown in Fig.

I. Our experiments on benchmark datasets and models show

that the proposed method can generate adversarial examples

with higher imperceptibility and ensure attack performance.

Our main contributions in this paper can be summarized as

follows:

• We propose a novel invertible network-based adversarial

example generation method called RIA. This method

use reversible networks to extract the feature map and

add well-designed perturbations directly to the feature

map. The adversarial examples are generated from the

perturbed feature maps.

• We conduct multiple experiments based on a series of

benchmark datasets and models. The experimental results

demonstrate that the adversarial examples generated from

the proposed method are more natural than those gener-

ated by adding perturbations directly to the original image

using the additive transform.

• In real-world scenarios, malicious attacks are often elab-

orately designed. Our method can generate adversarial

examples that are difficult to be perceived by the naked

eye but still have superior attack performance, providing

better inspiration for further exploring the robustness and

defense measures of DNN models under such subtle

malicious noise.

II. RELATED WORK

In white-box attack settings, attackers can access the whole

information about the target model, including parameters,

model structure, and even the training datasets. Many methods

can generate adversarial examples to attack the target model

successfully. The most relevant to our work are pixel-level

attacks, and feature-level attacks.

A. Pixel-level Attack

The Fast Gradient Sign Method (FGSM) [6] is a typical

pixel-level attack method that generates adversarial examples

in just one update step. BIM [12] extends FGSM to generate

adversarial examples through multi-step updates. PGD [7] is

similar to BIM [12] except that it randomly selects an initial

point near a benign example as the starting point for an

iterative attack.

B. Feature-level Attack

In order to enhance the attack capability of adversarial

examples, many studies have focused on perturbing the in-

termediate layer by the guidance of pixel-level noise. Some

approaches generate perturbations to interfering with the ac-

tivation of the intermediate layer. These include [13], which

generates more spurious activations by generating a universal

perturbation to disturb the activation of the middle layer.

FDA [14] perturbs each layer of the feature map by adding

perturbations on the original image to change the value of

the activations in the feature space. Through random mask

and gradient aggregation, FIA [15] guides the generation

of adversarial examples by disrupting aggregated gradients

obtained from images processed differently.

In order to clearly position our investigation and highlight

our unique features, we analyze the differences between our

research and above existing research as follows:

• Unlike pixel-level attack methods that directly add pertur-

bations at the pixel-level using additive transformations,

RIA uses invertible transformations to obtain adversarial

examples from perturbed feature maps.

• Unlike the related research on feature-level attacks, RIA

does not need to add global perturbation at the pixel-

level to destroy the feature map. However, it perturbs the

feature map to reduce redundant noise while maintaining

the attack performance.

III. PRELIMINARY

A. Adversarial Attack

Given a clean image x with true label y and a targeted label

yadv , a well-trained classifier f : f(x) → y ∈ {1, 2, ...,K},
can map x to it’s corresponding label y correctly. The goal of

adversarial attack is to find an adversarial example x′ of clean

image x by solving an optimization problem Ladv(·), which

leads f(x′) �= f(x) for untargeted attack or f(x′) = yadv for

target attack. For adversarial loss Ladv(·), the following cross-

entropy loss is selected:

Ladv =

{
log(Py(x

′)) for untargeted attack,

−log(Pyadv(x
′)) for targeted attack.

(1)

Where P (·) is the probability output (softmax on logits) of

the target model f w.r.t class y or yadv .

B. Deep Invertible Network

The deep reversible network(I-revnet) [11] proposed an

architecture that enables the interconversion of original image

and feature map. I-revnet realizes the interconversion between

feature map and original image by utilizing feature extraction

and restoration module. They all consist of two branches

connected by residual modules G and F ; during forward

propagation, these two branches’ results are alternated, as

shown in Fig. 2.

Fig. 2. Reverse block structure: G and F represent convolutional operation,
each block has two branches.
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An initial input is split into two sublayers of equal size,

thanks to the following step according to the channel dimen-

sion:

(x0, x̃0) = S(X), (2)

where X represents the original image and (x0, x̃0) indicates

the input of two branches of the network. S(·) represents the

split operation, which firstly performs downsampling to reduce

the resolution and increase the number of channels to ensure

the integrity of information and then facilitates upsampling

and dimension reorganization in the reverse process.

After sufficient steps, it recombines the two branches’

output through the inverse operation S−1(·) to obtain the

feature map. The operations can be defined as:{
yj = xj + F (x̃j)
ỹj = x̃j +G(yj),

(3)

Xfeature = S−1(yn, ỹn), (4)

where yj and ỹj is the output of two branches, j represents

the layer j of the network. The Xfeature is the feature map of

the raw image, and n is the last layer of the feature extraction

module.

Compared with the feature extraction process introduced

before, feature restoration is a corresponding reverse process.

The whole process of restoration is defined as:

(yn, ỹn) = S(Xfeature), (5)

{
x̃j = ỹj −G(yj)
xj = yj − F (x̃j),

(6)

x = S−1(x0, x̃0), (7)

where (y0, ỹ0) is the two branches obtained by split operation

through the feature map.

IV. METHOD

A. Overview

We aim to find optimal perturbations at the feature-level

and restore the perturbed feature map to corresponding spatial

one. The framework of our proposed method is illustrated in

Fig. 3. The whole workflow can be divided into the following

three parts:

• Feature Extraction The clean feature map is obtained

from the original image through the feature extraction

module, and the step is denoted by E(·) in the following.

• Adversarial Feature Map Optimization RIA optimize

perturbations by constantly increasing the adversarial loss

to obtain the adversarial feature map, denoted as op(·).

• Feature Restoration RIA use this step to reverse the

perturbed feature map to the corresponding image. This

step is described as R(·) in the following.

Formally, we denote our final objective as:

argmax
N

Ladv(x
′, y), where x′ = R(op(E(x), N)),

s.t. ||x′ − x||∞ < ε (8)

where N is the initial noise draw from the normal distribution,

RIA increased the adversarial loss between the restored image

and the raw image by continuously optimizing the noise.

 

Fig. 3. An overview of the proposed method. Feature Extraction is a CNN
module that extracts the feature map from the image. Feature Restoration is
a reversible module that restores the image from the corresponding feature
map. Noise is randomly initialized perturbations.

B. Feature Extraction

RIA use E(·) to get the feature map to be optimized. Given

a clean image x, the corresponding feature map Xfeature
clean can

be obtained by the following step concretely:

(xclean
0 , x̃clean

0 ) = S(Xclean), (9)

{
ycleanj = xclean

j + F (x̃clean
j )

ỹcleanj = x̃clean
j +G(ycleanj ),

(10)

Xfeature
clean = S−1(ycleann , ỹcleann ). (11)

C. Adversarial Feature Map Optimization

In order to obtain the adversarial feature map, RIA first

initialize the noise δinit by drawing from normal distribution

N ∼ (μ, σ2) with the same size as the feature map. Then it

can get the feature map with the noise:

Xfeature
adv = Xfeature

clean + δinit. (12)

To mislead the target model, RIA use Adam optimizer to

optimize the δinit by increasing Ladv(x
adv, x) continuously.

Moreover, RIA uses cross-entropy loss as the adversarial

loss. The malicious noise δadv is calculated as the following

optimization process:

δadv = op(δinit), (13)
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where op(·) is an iterative optimization process by adversarial

loss. After getting the final adversarial noise, the adversarial

feature map can be obtained:

Xfeature
adv = Xfeature

clean + δadv. (14)

D. Feature Restoration

To reverse the feature map to an image, RIA use R(·)

corresponding to E(·). Once the optimal feature map Xfeature
adv

is gained, RIA can build the adversarial example xadv by

following steps:

(yadvn , ỹadvn ) = S(Xfeature
adv ), (15)

{
x̃adv
j = ỹadvj −G(yadvj )

xadv
j = yadvj − F (x̃adv

j ),
(16)

xadv = S−1(xadv
0 , x̃adv

0 ). (17)

For clarity, we present the whole algorithm of RIA is listed

in Alg. 1, which could help readers to re-implement our

method step-by-step.

Algorithm 1 RIA Attack

Requires: A clean image x, a pre-trained feature extraction

module E(·) and feature restoration module R(·), a target

model f (·), a initial perturbation δinit, and a maximum

number of iterations N.

1: Initialization:xadv = x, δ = δinit;
2: for i = 1 to N do
3: Extract the feature map Xfeature

adv from xadv by E(·) in

Eq. 11;

4: Obtain the perturbed feature map Xfeature
adv based on

the current perturbation δ in Eq. 12;

5: Reverse the perturbed feature map Xfeature
adv to a per-

turbed image xadv in Eq. 17;

6: Optimize the δ by maximizing the Ladv(x
adv, x) in Eq.

2;

7: if f(xadv �= f(x)) then
8: break

9: end if
10: end for

V. EXPERIMENTS

A. Experimental Setup

• DataSets. We evaluate the performance of RIA on three

benchmark datasets, namely CIFAR-10, SVHN , and

ImageNet-1K. For CIFAR-10, we selected the entire

test set; for SVHN, we randomly selected 10k images

from test set; for ImageNet-1k, we randomly selected 2k

images with correct classification to verify the proposed

method.

• Implementation details. In the proposed method, Adam

is selected as the optimizer; the perturbation budget is

set to 8/255 under L∞. The initial noise drawn from

the normal distribution is obtained by Xavier, we set the

value of gain = 0.01. The maximum number of iterations

is 100, and the iteration is stopped after the adversarial

example is obtained. Among the comparison methods

we chosen, ε is the same as RIA for PGD [7], BIM

[12], MI-FGSM [16], and ILA [8]. These comparative

experiments were done using the adversarial attack tool

library torchattacks 1. As for ILA [8], the last avgpool is

the attacked layer. We selected ResNet50, DenseNet161,

GoogLenet, and Inception-V3 as target models; they

achieved 93.65%, 94.05%, 92.84%, 93.74% test accuracy

on cifar-10, 94.44%, 95.12%, 95.52%, 93.22% on SVHN,

and 76.13%, 77.13%, 69.77%, 77.29% on ImageNet. All

the experiments are conducted on NVIDIA RTX 3080

GPU with 10GB memory.

• Evaluation metrics. We selected attack success rate

(ASR), Structural Similarity(SSIM) [17], Peak Signal-

to-Noise Ratio(PSNR), and Deep Image Structure and

Texture Similarity(DISTS) [18] to assess RIA.

B. Attack Success Rate

In this part, we will evaluate the attack ability of different

white-box attacks.

TABLE I
ATTACK SUCCESS RATE. ALL THE RESULTS ARE UNDER L∞ = 8/255 OF

UNTARGETED ATTACK.

DataSets Attacks ResNet50 DenseNet161 GoogLeNet Inception V3

Cifar-10

PGD 99.77 98.16 100 97.92

BIM 99.77 98.17 100 97.94

MI-FGSM 99.57 97.93 100 97.82

ILA 99.90 94.85 99.90 91.67

Ours 99.62 94.30 100 92.95

SVHN

PGD 98.56 98.17 97.04 95.07

BIM 98.56 98.17 97.04 95.10

MI-FGSM 98.49 97.85 96.66 94.38

ILA 99.88 99.81 99.51 99.31

Ours 99.69 99.88 99.55 99.15

ImageNet

PGD 100 100 100 99.75

BIM 100 100 100 99.80

MI-FGSM 100 100 100 99.80

ILA 100 100 100 99.55

Ours 99.95 99.90 100 96.90

Table. I shows the attack performance of five attack ap-

proaches. Our proposed method is effective on different bench-

mark datasets and models, and it proves that by querying the

gradient information of the target model and adding pertur-

bations directly to the feature map is effective for building

adversarial examples.

C. Imperceptibility

In this subsection, we evaluated the performance of five

different attack methods on three image quality metrics.

Generally, PSNR (Peak Signal to Noise Ratio) is used to

measure the degree of distortion of an image, with larger

values indicating less distortion. SSIM (structural similarity

1https://github.com/Harry24k/adversarial-attacks-pytorch
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TABLE II
IMPERCEPTIBLE ASSESSMENT ON CIFAR-10 ACROSS DIFFERENT DATASETS AND METHODS. ALL OF THE RESULTS ARE UNDER L∞=8/255 OF

UNTARGETED ATTACK.

Attacks
ResNet50 DenseNet161 GoogLenet Inception V3

SSIM PSNR DISTS SSIM PSNR DISTS SSIM PSNR DISTS SSIM PSNR DISTS

PGD 0.9408 30.4991 0.0972 0.9429 30.6808 0.0973 0.9474 31.1049 0.0867 0.9522 31.6940 0.0830

BIM 0.9409 30.5023 0.0973 0.9429 30.6776 0.0974 0.9475 31.1088 0.0866 0.9522 31.6921 0.0831

MI-FGSM 0.9305 29.8219 0.1066 0.9279 29.6119 0.1117 0.9338 30.1978 0.0981 0.9253 29.6767 0.1088

ILA 0.9383 30.2525 0.1051 0.9260 29.5611 0.1248 0.9602 32.1383 0.0766 0.9401 30.5899 0.0981

Ours 0.9718 34.2643 0.0639 0.9672 33.6060 0.0710 0.9804 35.8678 0.0492 0.9713 34.5781 0.0615

TABLE III
IMPERCEPTIBLE ASSESSMENT ON SVHN ACROSS DIFFERENT DATASETS AND METHODS. ALL OF THE RESULTS ARE UNDER L∞=8/255 OF

UNTARGETED ATTACK.

Attacks
ResNet50 DenseNet161 GoogLenet Inception V3

SSIM PSNR DISTS SSIM PSNR DISTS SSIM PSNR DISTS SSIM PSNR DISTS

PGD 0.9215 32.6885 0.1385 0.9156 33.3183 0.1451 0.8857 30.8637 0.1831 0.8731 30.5213 0.1817

BIM 0.9215 32.6882 0.1385 0.9156 32.3176 0.1451 0.8857 30.8626 0.1831 0.8731 30.5222 0.1817

MI-FGSM 0.9114 32.1458 0.1479 0.9066 31.8551 0.1532 0.8777 30.6266 0.1877 0.8700 30.4146 0.1831

ILA 0.9235 32.6346 0.1478 0.9041 31.7292 0.1749 0.8857 30.5543 0.1903 0.8452 29.5350 0.2017

Ours 0.9795 39.5456 0.0608 0.9802 39.6539 0.0592 0.9756 38.8568 0.0670 0.9744 38.9537 0.0686

TABLE IV
IMPERCEPTIBLE ASSESSMENT ON IMAGENET ACROSS DIFFERENT DATASETS AND METHODS. ALL OF THE RESULTS ARE UNDER L∞=8/255 OF

UNTARGETED ATTACK.

Attacks
ResNet50 DenseNet161 GoogLenet Inception V3

SSIM PSNR DISTS SSIM PSNR DISTS SSIM PSNR DISTS SSIM PSNR DISTS

PGD 0.8965 32.7266 0.1072 0.8939 32.5210 0.1160 0.8922 32.6143 0.1126 0.9020 33.0347 0.1075

BIM 0.8965 32.7268 0.1071 0.8939 32.5200 0.1161 0.8922 32.6118 0.1126 0.9020 33.0318 0.1074

MI-FGSM 0.8302 30.5998 0.1438 0.8282 30.4673 0.1521 0.8283 30.5487 0.1465 0.8320 30.6343 0.1446

ILA 0.9123 33.0199 0.1115 0.8830 31.8470 0.1669 0.9300 34.4472 0.0805 0.9323 34.6594 0.0808

Ours 0.9721 35.8814 0.0419 0.9729 35.9983 0.0411 0.9709 35.7923 0.0417 0.9729 36.1336 0.0390

index) is used to measure the similarity of two images, which

is closer to the evaluation index of the human visual system.

DISTS(Deep Image Structure and Texture Similarity) is used

to evaluate the difference in human perception of two images

by measuring texture similarity.

Table. II, Table. III, and Table. IV show the experimental

results of several different methods on CIFAR-10, SVHN, and

ImageNet, respectively. These results show that the adversarial

examples generated by RIA significantly improved PSNR

and SSIM, and effectively reduced DISTS. These adversarial

examples have slight distortion and are more similar to the

original images, which make them more imperceptible to the

naked eye.

D. Analysis

We analyze why adversarial examples generated by RIA are

more imperceptible than other methods that design pixel-level

perturbations.

The feature layer aggregates the most important information

of the original image, and a subtle interference may cause

target model to produce wrong predictions. RIA initialize a

noise drawn from a normal distribution with minimal means,

and the optimized perturbations are also tiny when the attack

is successful. Based on the tiny perturbation in the feature-

level, the corresponding adversarial example reversed from the

perturbed feature map also has a little noise. As shown in Fig.

4, the pixel-level perturbations are much smaller than other

methods.

Fig. 4. Comparison of the noise’s means generated by different methods in
pixel-level.

There is some mapping relationship between feature map
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and original image. Since the perturbation is focused on the

essential features, the corresponding adversarial examples will

reduce redundant noise. Most of these maliciously crafted ex-

amples generated by RIA have perturbations that concentrate

on the critical regions. Fig. 5 shows the noise of different

attack methods on ImageNet. In the proposed method, the

prominent noise is only generated in a portion of the areas

and channels, and the black area is noiseless.

(a) Ours (b) PGD (c) MIFGSM (d) ILA

Fig. 5. Niose of adversarial example generated by different attack method.

VI. CONCLUSION

Adversarial example generation methods are critical for

simulating well-crafted malicious attacks, which can fur-

ther enlighten more effective adversarial defense methods.

However, well-designed malicious attacks are often highly

stealthy and efficient, such that adversarial examples must

be considered in terms of attack performance and stealth.

Most existing adversarial example generation methods focus

too much on attack performance and thus design adversarial

noise at the pixel level, resulting in the generated adversar-

ial examples with redundant noise and being accessible to

perceptible. This work tries to directly disturb the feature

map to generate adversarial examples with high concealment.

Specifically, we proposed a reversible network-based attack

method named RIA, which calculates perturbations in the

feature-level straightforward and obtains the corresponding

adversarial examples from the well-designed feature map with

suitable noise. Extensive experiments across different datasets

and pre-trained models have been conducted to validate the

effectiveness of the proposed method. The results show that

RIA significantly improves the image quality and invisibility

of the adversarial examples while ensuring its attack ability.
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