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A B S T R A C T

Automating disease classification in whole slide images (WSIs) is crucial for improving clinical diagnostic
efficiency. However, existing multiple instance learning (MIL) approaches for this task often struggle with
challenges such as insufficient focus on positive regions and data imbalance between positive and negative
regions. These issues can lead to suboptimal performance in practical applications. To address these problems,
in this paper, we propose a novel embedding-based MIL technique called pseudo-label attention-based
multiple instance learning (PAMIL). PAMIL aggregates each instance’s features regarding their contributions
to improving downstream classification performance. The key insight of PAMIL involves training the model
in a supervised manner by introducing pseudo-labels to emphasize positive regions. Additionally, we propose
a fine-tuning strategy to effectively refine the dataset, eliminating the interference of false-positive data and
alleviating data imbalance. The effectiveness of PAMIL was demonstrated through comparisons with six state-
of-the-art MIL techniques across two large-scale, real-world datasets. Empirical results show that the proposed
method outperforms other methods, achieving up to a 2.15% improvement in accuracy and a 1.61% increase in
area under the curve (AUC) on the Cancer Genome Atlas Non-Small Cell Lung Cancer (TCGA-NSCLC) dataset,
highlighting the superiority of our method in practical applications, such as helping clinicians diagnose quickly.
1. Introduction

Histopathology image analysis plays an essential role in cancer
detection, diagnosis, prognosis, and treatment response prediction in
patients (Lu et al., 2021; Myronenko et al., 2021; Li et al., 2022). Whole
slide image (WSI), as a frequently used form of data in histopathology
image analysis, contains a wealth of information about the morpho-
logical and functional characteristics of biological systems. They can
be used to monitor the underlying mechanisms contributing to disease
progression and patient survival outcomes. The widespread use of WSI
images underscores the need for automated histopathological image
diagnosis (Liu et al., 2017; Li and Ping, 2018; Madabhushi and Lee,
2016; Sirinukunwattana et al., 2017; Chen et al., 2019; Li et al., 2021a).

In many cases, WSIs boast incredibly high resolutions, often as large
as 150,000*150,000 pixels. This sheer size renders them nearly im-
possible for deep learning models to process effectively. Furthermore,
the training of supervised deep learning models needs vast datasets
with meticulously crafted annotations of high-quality. However, clin-
ical datasets often lack pixel-level annotations for WSIs. Therefore,
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weakly supervised learning (WSL) has been widely used in the field
of histopathology as it can use coarse-grained (image-level) annota-
tions to automatically infer fine-grained (pixel-level or patch-level)
information.

Multi-instance learning (MIL), a specific form of WSL, stands as
a prominent deep learning technology within digital pathology. MIL-
based methods have effectively solved the problem posed by large WSI
images by dividing them into numerous patches. Meanwhile, these
methods address the limitations associated with pixel-level annotations
for tissue phenotyping by using WSI labels or patient-level labels pro-
vided through weak supervision. Existing MIL-based methods generally
consist of two stages (Dietterich et al., 1997; Maron and Lozano-
Pérez, 1997): the first stage involves extracting instance-level feature
representations from randomly sampled image patches within a WSI
bag (where all patches extracted from a WSI are considered a bag),
and the second stage employs an aggregation algorithm to process the
bag of instances, yielding a WSI slide-level feature representation for
downstream classification tasks.
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Unfortunately, MIL-based WSI analysis approaches still grapple with
wo main challenges. First, the portion of the region of interest is rela-
ively small when compared to the whole image, resulting in the model
xhibiting a bias toward learning negative tissue features (Campanella
t al., 2019). Thus, acquiring accurate tissue phenotyping, which en-
ompasses both feature extraction and feature aggregation in the con-

text of MIL, remains a pivotal concern in computational pathology.
urthermore, slide-based classification metrics may yield erroneous
ssessments if instance-level performance falters, particularly when

only slide-level labels are accessible.
To enhance feature extraction performance, recent studies (Li et al.,

2021b; Chen et al., 2022) have empowered extractors with
elf-supervised capabilities at the patch level instead of the tradi-
ional pre-training of feature extractors on the ImageNet dataset. This
pproach has substantially improved downstream task effectiveness.

Regarding feature aggregation, existing methods have focused on ag-
gregating instances with consideration of their mutual relationships
(Chikontwe et al., 2020; Li et al., 2021b; Shao et al., 2021). However,
most of these attention-based MIL methods predominantly empha-
size high-scoring instances or prioritize the maximum and minimum
instances, often neglecting adequate attention to the positive region
(where positive instances reside within the bag). Furthermore, existing
MIL methods (Lu et al., 2021; Campanella et al., 2019; Ilse et al.,
2018) rely on image-level labels for WSL but lack the ability to discern
the actual labels of instances, which could be utilized for supervised
learning.

In response to these challenges, this paper proposes a novel
embedding-based MIL approach, termed pseudo-label attention-based
multiple instance learning (PAMIL). PAMIL explicitly models the contri-
butions of each instance during the feature aggregation process. Unlike
existing MIL methods, our focus is not on designing complex feature
xtractors or classifiers. Instead, we enhance the weights of positive
nstances to aggregate more accurate bag features. Additionally, we

introduce a pseudo-label-based attention strategy to direct the model’s
focus toward positive regions. Specifically, we predict instance proba-
bilities using an instance probability predictor, assign pseudo-labels to
the highest and lowest instances, and subsequently train the instances
in a supervised manner to dynamically emphasize positive regions.
urthermore, we devise a fine-tuning strategy to refine the model using
eatures extracted from the enhanced dataset, reducing interference
rom uncertain instances. Extensive empirical results underscore our
ethod’s superiority, showcasing higher area under the curve (AUC)

cores and improved classification accuracy. The primary contributions
f our proposed method are as follows:

• We propose a novel Multi-instance Learning (MIL) framework,
called Pseudo-label Attention-based MIL (PAMIL), which inte-
grates attention mechanisms and a fine-tuning strategy to ensure
the model’s focus on positive regions while accurately identifying
key instances for more effective feature aggregation.

• We introduce an innovative attention module driven by pseudo-
labels, guiding the model to emphasize positive regions while
retaining complementary information, thereby aggregating richer
and more specific features for robust decision-making.

• We establish a dataset fine-tuning strategy based on pseudo-
labeled instance probabilities. This strategy prioritizes high and
low-scoring instances, eliminating unnecessary data and refining
internal attention, leading to a more focused and effective model.

• We validate the effectiveness of the proposed framework using
the Cancer Metastases in Lymph Nodes Challenge 2016 (CAME-
LYON16) and The Cancer Genome Atlas Non-Small Cell Lung
Cancer (TCGA-NSCLC) datasets. Our empirical results demon-
strate the superior classification performance of PAMIL for Whole
Slide Image (WSI) classification tasks.
2 
The remainder of this paper is structured as follows: In Section 2,
we provide a brief review of related works in WSL. Section 3 outlines
the entire pipeline of our proposed method. Extensive experiments
demonstrating the superiority of PAMIL are presented in Section 4.
Finally, Section 5 summarizes our work.

2. Related work

2.1. Multiple instance learning

Instance-based methods These approaches focus on training an
instance-level classifier to classify individual instances and
subsequently aggregate the instance labels to make predictions for the
corresponding bag. Typically, instance-based methods employ either
average pooling or maximum pooling (Feng and Zhou, 2017; Pinheiro
nd Collobert, 2015; Zhu et al., 2017), both of which are untrained
perations that may limit their applicability. In contrast, instance-

based approaches are more inclined to detect maximal instances.
However, Liu et al. (2012) have shown that models successfully iden-
tifying key instances are more likely to achieve improved bag label
predictions.

Embedding-based methods Embedding-based methods focus on
training an instance-level feature extractor to generate embedding rep-
resentations of individual instances. These embeddings are then aggre-
gated to form bag embeddings, which are subsequently used to predict
bag labels. This approach helps mitigate the potential issue of under-
training instance-level classifiers, which can occur in instance-based
approaches. Wang et al. (2018) have demonstrated that embedding-
based methods outperform instance-based ones in accurately predicting
bag labels. Ilse et al. (2018) introduced an attention mechanism to
aggregate instance features, with the aggregation operation being pa-
rameterized by a neural network. Later, Hashimoto et al. (2020) used
the attention mechanism to aggregate instance features at different
resolutions on multiple scales. Yao et al. (2020) proposed a clustering
method followed by the aggregation of instance features from differ-
ent clusters using the attention mechanism. Additionally, aggregation
can also be achieved through the consideration of mutual instance
relationships, which can be learned independently by various neural
modules such as Recurrent Neural Networks (RNN) (Campanella et al.,
2019), Graph Convolutional Networks (GCN) (Tu et al., 2019; Zhao
et al., 2020), and Transformers (Li et al., 2019; Shao et al., 2021). Li
et al. (2021b) introduced new MIL aggregators that model relationships
between instances in a two-fluid structure using trainable distance
metrics, demonstrating strong performance in this context.

2.2. Attention mechanism in MIL

The attention mechanism module assesses the significance of var-
ous features within an image. In the realm of deep learning, incor-
orating the attention mechanism module allocates higher weights
o essential features, dampening the influence of irrelevant informa-
ion and thereby enhancing the model’s information processing effi-
iency (Wu et al., 2018a,b). In the context of the MIL problem, the
ttention weights assigned to each instance in the bag signify the
xtent of their contribution. Nikolaos Pappas and Andrei Popescu-

Beliss (Pappas and Popescu-Belis, 2014) introduced an attention-based
MIL approach where instance attention weights are learned using a
inear regression model. Qi et al. (2017) employed an attention-based

MIL operator, although attention was computed via a dot product,
esulting in inferior performance compared to the ‘‘max’’ operator. Ilse

et al. (2018) leveraged the attention mechanism to aggregate instances,
assessing their importance and assigning distinct weights accordingly,
pioneering integration of MIL with the attention mechanism mod-
ule. Graph-Transformer for Whole Slide Image Classification (GTP)
by Zheng et al. (2022) introduces a graph-based transformer model
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Fig. 1. Overview of PAMIL. (a) Each WSI is cropped into patches for feature extractor training by self-supervised contrastive learning. (b) Trained extractors are used to compute
the embedding of each patch. Combination of instance-based and embedding-based methods are used together to obtain bag classification results, where key instance scores and
bag ‘‘embeddings’’ aggregation are obtained based on attention with pseudo-label. (c) Attention with pseudo-label of PAMIL. The pseudo-label setting module scores instances by
instance predictor and rearranges instances according to prediction scores. Selected top 𝛼% instances and bottom 𝛽% instances are pseudo-labeled as 1 and 0, respectively. The
instance attention module aggregates instance probabilities into an attention matrix to weight top 𝛼% instances.
tailored for WSIs, which utilizes the graph structure of WSI patches
to enhance the model’s interpretability and accuracy. However, these
previous efforts did not adequately emphasize the positive regions nor
assign high attention weights to key instances. In this paper, we present
a method that employs pseudo-labeling to train the model to discern
positive regions, thus enhancing classification performance.

2.3. Pseudo-label in MIL

Pseudo-labeling involves creating target labels for unlabeled data to
augment and essentially fully annotate a dataset. In the realm of deep
learning, incorporating a pseudo-labeling module enables supervised
learning with extensive amounts of unlabeled data, thereby enhancing
model performance. In histopathology WSI, only slide-level labels are
available, and patch-level labels are lacking. The central challenge in
applying the pseudo-labeling method within the MIL algorithm is the
generation of these pseudo-labels. Campanella et al. (2019) select key
instances based on the predicted probabilities from the instance classi-
fier and assign corresponding bag labels to these critical instances. Lu
et al. (2021) generate pseudo-labels for clustered instances with high
and weak attention, using instance-level feature supervision as signals
in the feature space to train the instance-level classifier. Lerousseau
et al. (2020) take this a step further by leveraging parameters in the
realm of WSI image segmentation to identify instances with high and
weak focus, guided by instance prediction probabilities. They then
assign pseudo-labels to train instance feature extractors, ultimately
achieving advanced segmentation results.
3 
3. Methods

3.1. Problem formulation

In the context of MIL, each slide denoted as 𝑊𝑗 from the dataset
𝑊 =

{

𝑊1, 𝑊2,… , 𝑊𝑁
}

, comprising 𝑁 WSIs, is partitioned into smaller
patches 𝑥𝑖, where 𝑖 = {1, 2,… , 𝑛}, and 𝑛 represents the number of
patches extracted from 𝑊𝑗 . All the patches 𝑥𝑖 originating from a slide
𝑊𝑗 collectively form a bag 𝐵 =

{

(𝑥1, 𝑦1),… , (𝑥𝑛, 𝑦𝑛)
}

, where 𝑦𝑖 ∈ {0, 1},
for 𝑖 = {1, 2,… , 𝑛} represents the label of each patch, signifying an
instance. To be specific, the training samples in MIL consist of 𝑁 bags,
each labeled with 𝑌𝑗 ∈ {0, 1} , 𝑗 = {1, 2,… , 𝑁}. This implies that bags
containing multiple instances are considered as a set of training sam-
ples, with each bag possessing a bag-level ground-truth label denoted as
𝑌𝑗 . Notably, only slide-level labels (i.e., pixel-level labels of WSIs) are
accessible, while instance-level labels are absent. In accordance with
the standard multiple instance (SMI) assumption (Amores, 2013), if a
bag contains at least one positive instance (i.e., one or more instances
belong to some target positive class), the bag’s label is designated
as positive; otherwise, it is considered negative. Consequently, the
prediction of the bag label, denoted as 𝑐(𝐵), is formulated as follows:

𝑐(𝐵) =
{

0, 𝑖𝑓 𝑓 ∑

𝑦𝑖 = 0
1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

. (1)

Depending on the specific transformations applied to the instances,
the bag labels predicted by MIL can be further expressed as:
𝑐(𝐵) = 𝑔(𝑓 (𝑥0),… , 𝑓 (𝑥𝑛)), (2)
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Fig. 2. Workflow of fine-tuning strategy. (a) Training images are first fed into PAMIL to select instances to constitute pseudo-bags. We learn attention weights for instances,
which can be used to select top a% (high attentions) and bottom b% (low attentions) instances in each bag. (b) The model is trained again with pseudo-bags to fine-tune internal
attention and further improve classification performance.
where, in the context of embedding-based MIL methods, the function
𝑓 serves as an instance-level feature extractor, responsible for obtain-
ing the embedding representation of each instance. The function 𝑔
operates as an aggregation operator, tasked with aggregating instance
embeddings into a bag-level embedding. MIL initially maps instances
to low-dimensional embeddings and aggregates them to generate bag
embeddings. These bag embeddings are subsequently processed by a
slide-level classifier, yielding a bag representation that is independent
of the instance counts.

3.2. Framework overview

The overall framework of the proposed PAMIL is illustrated in
Fig. 1, which can be divided into two main phases: pre-training and
training. In the pre-training phase, we employ the SOTA self-supervised
contrastive learning method, SimCLR (Chen et al., 2020), to pre-train
the patch feature extractor using histopathological image data. In the
training phase, we utilize the well-trained patch feature extractor to
extract instance-level features. The final classification results are gen-
erated through two classification branches, which include instance- and
bag-level embeddings. In addition, to ensure that the model focuses
extensively on positive region features and aggregates more precise
bag embeddings for accurate bag classification, we constructed a novel
attention module based on pseudo-labels within the bag embedding
classification branch.

3.3. PAMIL

3.3.1. Pseudo-label setting
Compared to weakly supervised learning-based or unsupervised

learning-based approaches, supervised learning-based methods demon-
strate superiority in computational pathology (CPATH) image classifi-
cation tasks. However, training a model in a fully supervised manner
4 
necessitates accessible patch labels. Unfortunately, acquiring such an-
notations for the numerous patches extracted from WSI which can
number in the thousands, is impractical yet crucial for achieving good
generalization. PAMIL introduces a novel approach to address the chal-
lenge of missing patch-level ground-truth labels. Instead, it constructs a
set of pseudo-labels, which are generated by exploiting the properties
of the available slide-level labels denoted as 𝑌𝑗 . These pseudo-labels
serve as substitutes for patch-level ground-truth labels, enabling the
supervised training of the instance predictor 𝑔𝑝. The instances are
rearranged based on their prediction scores in descending order as part
of this process.

In this study, different pseudo-labels were assigned to negative and
positive WSIs: (1) Patches extracted from negative WSIs are all labeled
as negative, setting their pseudo-labels to 0. (2) Patches obtained from
positive WSIs may contain both positive and negative instances, making
it challenging to accurately determine their pseudo-labels. To mitigate
the influence of false-positive samples, we consider only the first 𝛼
percent instances and the last 𝛽 percent instances for setting pseudo-
labels (𝛼% represents the assumed minimum relative area of tumor
tissue in the WSI, and 𝛽% represents the range for normal tissue).
Pseudo-labels for the first 𝛼% (high-scoring instances) are assigned as 1,
while pseudo-labels for the last 𝛽% (low-scoring instances) are assigned
as 0, with the constraint that 𝛼 + 𝛽 ≤ 1. The instance loss function
𝐿𝑖𝑛𝑠𝑡𝑎𝑛𝑐 𝑒 for setting pseudo-labels can be written as follows:

𝐿𝑖𝑛𝑠𝑡𝑎𝑛𝑐 𝑒 = 𝑐0 ×
∑

𝑊𝑗∈𝑊 ;
𝑌𝑗=0

[
∑

𝑥𝑖∈𝑋
𝐿(𝑔𝑝(𝑥𝑖), 0) ] + 𝑐1

×
∑

𝑊𝑗∈𝑊 ;
𝑌𝑗=1

[
∑

𝑥𝑖∈𝑋;
𝑥𝑖∈𝑃 (𝑔𝑝 (𝑥𝑖 );𝛼 ,100)

𝐿(𝑔𝑝(𝑥𝑖), 1) +
∑

𝑥𝑖∈𝑋;
𝑥𝑖∈𝑃 (𝑔𝑝 (𝑥𝑖 );0,𝛽)

𝐿(𝑔𝑝(𝑥𝑖), 0) ],

(3)

where 𝑐0 and 𝑐1 represent the predicted probabilities of a negative or
positive image 𝑊 from the dataset 𝑊 , as defined in Eq. (1). 𝐿 denotes
𝑗
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the cross-entropy loss function. 𝑌𝑗 is the slide-level ground-truth label
for 𝑊𝑗 , where 𝑌𝑗 = 0 represents a normal image, and 𝑌𝑗 = 1 represents
 positive image. 𝑥𝑖 represents an instance from the bag 𝑋, cropped
rom 𝑊𝑗 . 𝑔𝑝(𝑥𝑖) is the predicted probability of the instance 𝑥𝑖 generated
y the instance predictor 𝑔𝑝. 𝑥𝑖 ∈ 𝑃 (𝑔𝑝(𝑥𝑖); 𝛼 , 100) signifies instances

with instance probabilities falling in the range (𝛼 , 100). Similarly, 𝑥𝑖 ∈
𝑃 (𝑔𝑝(𝑥𝑖); 0, 𝛽) represents instances with instance probabilities within the
range (0, 𝛽).

3.3.2. Instance attention
The objective of the instance attention mechanism is to enhance

he model’s focus on positive regions while preserving information
rom other regions. This is achieved by dynamically adjusting attention
eights based on the obtained instance probabilities.

Specifically, the instance probabilities obtained from the supervised
instance predictor 𝑔𝑝 are aggregated into an attention matrix, which
is used to assign higher weights to the top 𝛼% instances. Concurrently,
other regional features are retained through the introduction of a resid-
ual module. Consequently, the attention to positive regions is enhanced,
while other information is preserved. This process can be formulated as:

𝑠𝑐 𝑜𝑟𝑒 = 𝑝𝑟𝑒𝑑 𝑖𝑐 𝑡𝑜𝑟( 𝑥𝑖 ), (4)

𝐴𝑡𝑡𝑛𝑆 𝑐 𝑜𝑟𝑒 = 𝑆 𝑜𝑓 𝑡𝑚𝑎𝑥( 𝑡𝑜𝑝𝑘 ( 𝑠𝑐 𝑜𝑟𝑒 ) ), (5)

𝑥𝑖
′ = 𝑥𝑖 + 𝑥𝑖 ∗ 𝐴𝑡𝑡𝑛𝑆 𝑐 𝑜𝑟𝑒, (6)

where the 𝑠𝑐 𝑜𝑟𝑒 denotes the prediction score of instance 𝑥𝑖, 𝑡𝑜𝑝𝑘 de-
notes the operation of selecting the first 𝑘 instances, ∗ denotes matrix
multiplication, and 𝑥𝑖′ is the final output.

Attention Module Subsequently, the effect of the largest instance
on the aggregation of bag features is considered. The largest instance
plays a significant role in determining whether a bag is positive or
negative among all instances. Following the approach in Li et al.
(2021b), we utilize the distance between instances and the largest
nstance as the attention weight for each instance:

𝑎𝑖 = 𝐷(ℎ𝑖 ,ℎ𝑚) =
𝑒𝑥𝑝(⟨ℎ𝑖, ℎ𝑚⟩)

∑𝑁−1
𝑘=0 𝑒𝑥𝑝(⟨ℎ𝑖, ℎ𝑚⟩)

, (7)

where ℎ𝑖 is the feature of instance 𝑥𝑖 and ℎ𝑚 is the feature of the largest
nstance 𝑥𝑚.

3.4. Fine-tuning strategy

To achieve more accurate aggregation of bag features, we introduce
a fine-tuning strategy named PAMIL-Fine Tuning (FT) in this paper,
which is illustrated in Fig. 2, aimed at refining the dataset for model
training. PAMIL-FT reprocesses the dataset to fine-tune internal atten-
tion. Specifically, it leverages the instance probabilities provided by the
probability predictor 𝑔𝑝 to generate a pseudo-bag, comprising the top
% (high attention) and the bottom 𝛿% (low attention) instances, for
ine-tuning the model. This refined dataset enables the re-ranking of
elected positive and negative instances within each bag, with key in-
tances that are more representative of positive tissue receiving higher
ankings and greater attention weights. As a result, more accurate
ggregated bag features are obtained. Ultimately, the model not only
istinguishes positive tissues but also identifies key instances within
hem, enhancing classification performance.

PAMIL-FT offers the following advantages: (1) Elimination of con-
founding data (false-positive instances within bags) to improve the
model’s ability to distinguish positive tissues. (2) Solving the tissue
imbalance by adjusting the values of 𝛾 and 𝛿 to balance the ratio of
positive and negative instances within the refined dataset.
 a

5 
4. Experiments

In this section, we present the performance of the proposed method
n two challenging datasets: CAMELYON16 and TCGA lung cancers.
e compare it with recent MIL-based methods for the histopathological
SI classification task. Additionally, we perform ablation experiments

o investigate the proposed methods under different settings.
Implementation. We use ResNet-18 (He et al., 2016) as the back-

one network, pre-trained in a self-supervised comparative learning
SimCLR) manner, to extract instance features in the MIL framework.
e use the Adam optimizer (Kingma and Ba, 2014) with a constant

earning rate of 0.0001 to update the model weights during training.
ll experiments were conducted on a GPU server equipped with an
VIDIA A100-PCIE-40 GB, utilizing Python 3.8 and PyTorch v1.13.1
s the software environment.
Baselines. To demonstrate the effectiveness of PAMIL, we in-

lude the following baselines, encompassing both traditional instance-
based deep MIL methods and SOTA deep MIL methods: (1) Con-
ventional instance-based MIL methods, including mean-pooling and
max-pooling. (2) The classic AB-MIL (Ilse et al., 2018). (3) RNN-based
RNN-MIL (Campanella et al., 2019). (4) Three variants of AB-MIL: non-
local attention pooling DSMIL (Li et al., 2021b), single-attention-branch
CLAM-SB (Lu et al., 2021), and multi-attention-branch CLAM-MB (Lu
et al., 2021). (5) Transformer-based MIL, Trans-MIL (Shao et al.,
2021). (6) Double-tier MIL framework, DTFT (Zhang et al., 2022). (7)
Graph-Transformer-based, GTP (Zheng et al., 2022). We reproduce the
mpirical results from their officially released code using the same
ettings.
Metrics. In our experiments, we use classification accuracy and

he area under the receiver operating characteristic curve (AUC) as
he primary evaluation metrics. Classification accuracy measures the
verall performance of the model, and is calculated as follows:

Accuracy = TP + TN
TP + TN + FP + FN , (8)

where TP is the number of true positives, TN is the number of true
negatives, FP is the number of false positives, and FN is the number of
false negatives.

AUC measures the model’s ability to distinguish between positive
nd negative samples at various thresholds. A higher AUC indicates

better performance. It is calculated by plotting the ROC curve and
computing the area under it:
AUC = ∫

1

FPR=0
TPR(FPR) 𝑑FPR. (9)

Together, these metrics provide a comprehensive evaluation of
AMIL’s effectiveness in WSI classification.

4.1. Breast cancer classification result

We first introduce the CAMELYON16 dataset and present the exper-
mental results of the proposed method and baselines.
Dataset. The CAMELYON16 breast cancer lymphocyte dataset

(Litjens et al., 2018) is a publicly available dataset for detecting breast
ancer metastases. It comprises 270 training images and 129 test
mages with gigapixel resolution. The WSIs have multiple resolutions,
hich can be divided into approximately 3.2 million patches at 20×
agnification and 0.65 million patches at 10× magnification. The task

s formulated as a weakly supervised binary classification problem,
sing only slide-level labels to determine whether a specific bag is
ositive or negative. If a WSI contains all negative tissue (i.e., all
nstances in the bag are negative), the bag is labeled as negative.
onversely, if the bag contains positive tissue (i.e., some instances in
he bag are positive), it is labeled as positive.

Unfortunately, there exists a significant data imbalance in the WSIs
f the CAMELYON16 dataset, with negative tissue being much more
bundant than positive tissue. This imbalance can potentially bias the
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Table 1
Performance comparison of PAMIL and state-of-the-art methods at 20× and 10× magnification on the CAMELYON16 dataset with Accuracy
and AUC, highlighting the advantages of the proposed PAMIL and PAMIL-FT techniques in comparison to other conventional approaches. The
results emphasize the robustness and improved classification performance of the PAMIL-based methods in cancer detection tasks.

Methods CAMELYON16 20× CAMELYON16 10×

Accuracy AUC Accuracy AUC

Mean Pooling 0.639 ± 0.007 0.465 ± 0.010 0.636 ± 0.011 0.539 ± 0.012
Max Pooling 0.806 ± 0.028 0.833 ± 0.022 0.826 ± 0.029 0.858 ± 0.030
AB-MIL (Ilse et al., 2018) 0.835 ± 0.011 0.855 ± 0.006 0.841 ± 0.012 0.860 ± 0.007
RNN-MIL (Campanella et al., 2019) 0.825 ± 0.026 0.873 ± 0.002 0.844 ± 0.024 0.875 ± 0.002
DSMIL (Li et al., 2021b) 0.863 ± 0.013 0.893 ± 0.011 0.925 ± 0.008 0.951 ± 0.009
CLAM-SB (Lu et al., 2021) 0.846 ± 0.028 0.855 ± 0.015 0.859 ± 0.025 0.866 ± 0.013
CLAM-MB (Lu et al., 2021) 0.813 ± 0.025 0.877 ± 0.017 0.823 ± 0.027 0.878 ± 0.019
Trans-MIL (Shao et al., 2021) 0.849 ± 0.010 0.896 ± 0.032 0.860 ± 0.011 0.893 ± 0.031
DTFD-MIL (Zhang et al., 2022) 0.874 ± 0.016 0.891 ± 0.013 0.867 ± 0.125 0.944 ± 0.004

PAMIL (Ours) 0.876 ± 0.010 0.905 ± 0.004 0.938 ± 0.011 0.965 ± 0.003
PAMIL-FT (Ours) 0.888 ± 0.011 0.916 ± 0.005 0.953 ± 0.009 0.991 ± 0.001
Table 2
Performance comparison of PAMIL and state-of-the-art methods at 20× and 10× magnification levels on the TCGA Lung Cancer dataset with
Accuracy and AUC metrics for various methods, highlighting the advantages of the proposed PAMIL and PAMIL-FT approaches. Results
are shown for both 20× and 10× magnifications, specifically for the TCGA-NSCLC subset, emphasizing the improvements in classification
performance.

Methods TCGA-NSCLC 20× TCGA-NSCLC 10×

Accuracy AUC Accuracy AUC

Mean Pooling 0.833 ± 0.014 0.901 ± 0.015 0.728 ± 0.011 0.840 ± 0.012
Max Pooling 0.859 ± 0.030 0.946 ± 0.032 0.847 ± 0.029 0.901 ± 0.033
AB-MIL (Ilse et al., 2018) 0.869 ± 0.033 0.942 ± 0.028 0.772 ± 0.032 0.866 ± 0.028
RNN-MIL (Campanella et al., 2019) 0.862 ± 0.027 0.911 ± 0.026 0.845 ± 0.024 0.895 ± 0.025
DSMIL (Li et al., 2021b) 0.866 ± 0.016 0.926 ± 0.020 0.893 ± 0.013 0.962 ± 0.019
CLAM-SB (Lu et al., 2021) 0.818 ± 0.042 0.882 ± 0.024 0.800 ± 0.041 0.873 ± 0.023
CLAM-MB (Lu et al., 2021) 0.842 ± 0.044 0.938 ± 0.022 0.840 ± 0.043 0.912 ± 0.019
Trans-MIL (Shao et al., 2021) 0.877 ± 0.025 0.930 ± 0.014 0.867 ± 0.022 0.923 ± 0.013
DTFD-MIL (Zhang et al., 2022) 0.889 ± 0.032 0.938 ± 0.026 0.877 ± 0.029 0.937 ± 0.023
GTP (Zheng et al., 2022)a 0.823 ± 0.001 0.929 ± 0.003 – –

PAMIL (Ours) 0.901 ± 0.013 0.947 ± 0.005 0.918 ± 0.012 0.963 ± 0.004
PAMIL-FT (Ours) 0.907 ± 0.011 0.952 ± 0.004 0.932 ± 0.010 0.969 ± 0.001

a Data sourced from the original paper (Zheng et al., 2022).
a
P
h
c
w
O
c
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f
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a
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Table 3
Detailed information of the CAMELYON16 dataset (random 8:2 train-test split).

Dataset Type Negative Positive Total Data size

CAMELYON16 Training set 159 111 270 700GTest set 81 48 129

model to learn negative features while ignoring positive features. The
ollowing experiments show that our proposed method, which enhances
he attention to positive region features, overcomes this difficulty and
chieves advanced performance. Table 3 provides detailed information

about the CAMELYON16 dataset, including the distribution of training
and test sets.

Results. The classification results on CAMELYON16 are summa-
ized in Table 1. We conducted two sets of comparison experiments
sing non-overlapping patches of size 256 × 256 pixels sampled from
he tissue regions at 20× and 10× magnification, respectively. Since the
ositive area in CAMELYON16 accounts for only a small fraction of the
otal WSI, ensuring that the model sufficiently focuses on the positive
egion is crucial for correct WSI classification.

Traditional pooling aggregators, such as Mean Pooling and Max
ooling, aggregate instance scores to generate a bag score for classi-
ication. As shown in Table 1, Max Pooling outperforms Mean Pooling

by better identifying key instances, highlighting the importance of key
nstance identification for pathology image classification. Improved
IL aggregators, however, consistently outperform traditional ones,

s they leverage attention mechanisms to assign different weights to
nstances, allowing the model to focus on key regions more effectively.
his suggests that capturing instance relationships is critical for WSI
lassification.
 c

6 
In the CAMELYON16 20× experiments, DTFD-MIL constructed a
dual-layer MIL framework to reduce the number of instances per bag
and aggregated instances based on the ABMIL attention mechanism,
chieving promising classification performance. Our proposed method,
AMIL, optimizes the attention mechanism further, leading to the
ighest scores with an accuracy (ACC) of 87.5% and an area under the
urve (AUC) of 90.48%. In the 10× experiments, DSMIL assigned higher
eights to key instances, outperforming all other compared methods.
ur method, PAMIL, improved upon DSMIL, with ACC and AUC in-
reases of 1.25% and 1.40%, respectively. This superior performance
an be attributed to PAMIL’s ability to focus better on positive region
eatures and assign higher importance to positive tissue instances.

CAMELYON16 breast cancer classification presents additional chal-
enges due to data imbalance, as the positive regions constitute only
 small part of the overall WSI, causing models to learn the dominant
eatures of larger negative areas. The experimental results show that
AMIL-FT outperforms all other methods, improving ACC and AUC
y 1.56% and 2.66% at 10× magnification and by 1.25% and 1.08%

at 20× magnification, respectively. This demonstrates that PAMIL-FT,
y adjusting the data structure, mitigates the issue of data imbalance,
llowing the model to aggregate more accurate bag features and further
nhance classification accuracy.

4.2. Lung cancer classification result

In this part, we introduce the TCGA lung cancer dataset and show
the experimental results of the proposed methods on it.

Dataset. TCGA non-small cell lung cancer (TCGA-NSCLC) dataset
omprises a total of 1054 WSIs, encompassing two sub-types of lung
ancer: Lung adenocarcinoma (LUAD) (Collisson et al., 2014) and lung
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Table 4
Effects of model modules in PAMIL on Accuracy and AUC across CAMELYON16
and TCGA-NSCLC datasets. The table compares the performance of different model
configurations.

Methods CAMELYON16 TCGA-NSCLC

Accuracy AUC Accuracy AUC

(I) SimCLR+PAMIL+FT(Ours) 0.9531 0.9911 0.9320 0.9697
(II) SimCLR+PAMIL(Ours) 0.9375 0.9645 0.9175 0.9627
(III) SimCLR+Attention+MIL 0.9250 0.9505 0.8932 0.9620
(IV) Attention+MIL 0.8682 0.8760 0.7719 0.8656

able 5
etailed information of the TCGA lung dataset (random 8:2 train-test split).
Dataset Type LUAD LUSC Total Data size

TCGA-NSCLC Training set 432 410 842 767GTest set 109 103 212

quamous cell carcinoma (LUSC) (Network et al., 2012). We selected
053 WSI digital slides, consisting of 482 contaminated and 571 un-
ontaminated slides from TCGA, to construct the TCGA-NSCLC dataset.
t includes 541 LUAD slides and 513 LUSC slides. The dataset provides
.2 million patches at 20× magnification and 1.2 million patches at 10×
agnification. The task is framed as a weakly supervised sub-type clas-

ification problem, wherein only slide-level labels are used to determine
hether a WSI belongs to LUAD or LUSC. The bags contain mixtures of

umor and healthy patches for positive bags, and all healthy patches for
egative bags. Positive slides in this dataset contain substantial tumor
egions (average total cancer area per slide >80%), leading to a large
art of positive patches in positive bags. Consequently, pooling oper-
tors can achieve better performance compared to the CAMELYON16
ataset. The following experiments show the substantial improvements
n classification results achieved by enhancing the attention to positive
egion features. Table 5 provides detailed information about the TCGA
ung dataset, including the distribution of training and test sets.
Results. The classification results on TCGA-NSCLC are summa-

ized in Table 2. Similarly, we conducted two sets of comparison
xperiments using non-overlapping patches of size 256 × 256 pixels
xtracted from tissue regions at 20× and 10× magnification, respec-
ively. Since the tumor region in positive slides is significantly larger,
ven instance-level approaches perform well on the TCGA lung cancer
ataset. Consequently, the key challenge lies in the model’s ability to
dentify key instances that can effectively represent the bag for accurate

SI classification.
Due to the large tumor regions in positive slides of the TCGA lung

ancer dataset, even traditional pooling aggregators like Mean Pooling
nd Max Pooling perform well. Analyzing Table 2, we observe that
n the TCGA-NSCLC 20× experiment, our proposed method PAMIL
mproves ACC and AUC by 1.25% and 0.97%, respectively, compared
o DTFD-MIL. Similarly, in the TCGA-NSCLC 10× experiment, PAMIL
utperforms DSMIL with ACC and AUC improvements of 2.43% and
.07%. This demonstrates that PAMIL focuses more on positive regions,
ggregating richer and more specific bag features.

Furthermore, in the TCGA lung cancer dataset, experimental re-
ults show that PAMIL-FT outperforms all other compared methods.
ompared to PAMIL, PAMIL-FT improves ACC and AUC by 1.45%
nd 0.70% at 10× magnification and by 0.58% and 0.44% at 20×
agnification. This indicates that PAMIL-FT further enhances model

lassification accuracy by alleviating data imbalance and adaptively
djusting instance attention weights.

PAMIL demonstrates superior performance in aggregating positive
egion features, and PAMIL-FT enhances the model’s focus on key
nstances. The proposed method consistently outperforms other existing
IL methods at both 10× and 20× magnification, achieving remarkable

esults even with the data at 10× magnification.
7 
Fig. 3. Effect of 𝛼 and 𝛽 on the Validation AUC for PAMIL on the CAMELYON16
dataset. This heatmap shows the AUC values obtained by varying 𝛼 and 𝛽. Darker
colors indicate higher AUC values. The figure is used to identify the optimal values of
𝛼 and 𝛽 for maximizing the validation AUC on this dataset.

4.3. Ablation study

To further explore the contributions of the PAMIL modules and
the fine-tuning strategy in improving performance, we conducted a
series of ablation studies. All these experiments were conducted on the
CAMELYON16 and TCGA-NSCLC datasets and evaluated using accuracy
and AUC.

4.3.1. Effects of pseudo-label-based attention strategy and fine-tuning strat-
egy

Our proposed work compromises two main components: (1) PAMIL
and (2) FT strategy (FT). In this context, we compared the effect of
the PAMIL module and the fine-tuning strategy with several base-
lines, all performed on the CAMELYON16 and TCGA-NSCLC datasets at
10× magnification. Experiments (I), (II), and (III) use features learned
through self-supervised contrastive learning, while experiment (IV)
uses features learned by a feature extractor pre-trained on the ImageNet
dataset. Additionally, experiments (III) and (IV) both use attention-
based MIL methods.

As shown in Table 4 (I) and (III), both PAMIL and FT contribute
to accuracy improvements of 2.81% in CAMELYON16 and 3.88% in
TCGA-NSCLC, along with AUCROC improvements of 4.06% in CAME-
LYON16 and 0.77% in TCGA-NSCLC. Furthermore, the comparison
between (I) and (II) highlights the performance boost achieved by the
fine-tuning strategy. Additionally, we directly replaced PAMIL with
(III), the attention-based MIL method, to confirm whether attention
with pseudo-labels can effectively guide the model to focus more on
the positive region. Finally, we verified the effectiveness of contrastive
learning by comparing (III) and (IV).

4.3.2. Effects of pseudo-labeling method parameters
To further validate the performance of PAMIL on the CAMELYON16

dataset, we varied the values of 𝛼 and 𝛽 and measured the AUC. The
results under different settings are shown in Fig. 3. Given the data
imbalance in CAMELYON16 (positive area ≤20% of the total area),
we set the range of 𝛼 to 0 < 𝛼 ≤ 20 in the experiments. Since the
negative area is ≥80%, the range of 𝛽 is set to 0 < 𝛽 ≤80. As shown
in Fig. 3, when 𝛼 = 15 and 𝛽 = 50, the proposed method achieves its
best performance with an AUC of 0.9645. This indicates that setting
pseudo-labels as 1 for the top 15% of instances and as 0 for the bottom
50% during training results in the optimal classification performance
for the model.
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Fig. 4. Interpretability and visualization of attention maps in cancer region on CAMELYON16 cancer dataset. (a) shows ground-truth annotations, with (b–d) showing attention
maps of AB-MIL, DSMIL, and PAMIL, respectively.
4.3.3. Interpretability and attention visualization
We will further show the interpretability of PAMIL. As shown in

Fig. 4(a), the area within the red curve annotation represents the
cancer region, as provided by the annotations in the CAMELYON16
dataset. In Fig. 4(b–d), we visualized the attention scores from AB-MIL,
DSMIL, and PAMIL, respectively, as heatmaps to determine the region
of interest (ROI) and interpret the important morphology used for
diagnosis. Notably, compared to other methods (AB-MIL and DS-MIL),
the results from PAMIL exhibit a high level of consistency between
the finely annotated area and the heatmap. This observation illustrates
that the proposed PAMIL effectively focuses on positive regional tissues,
leading to improved classification performance.

4.3.4. Impact of imbalanced data
To investigate whether data imbalance in the CAMELYON16 dataset

affects the model’s performance, we conducted additional experiments.
Specifically, we randomly sampled 200 cases and trained the model
with different tumor sample proportions (30%, 40%, 50%, 60%, and
70%), using an 8:2 train-test split. After training, Accuracy, Precision,
and F1 scores were computed for each configuration. As illustrated in
Fig. 5, the performance differences across these imbalanced settings
were minimal, indicating that the proposed method is robust to data
imbalance.

4.3.5. Time efficiency analysis
We conducted a comprehensive analysis comparing the efficiency of

the proposed model across the preprocessing, training, and prediction
stages. In the preprocessing stage, most models employ similar steps,
such as pruning, standardization, and feature extraction, resulting in
negligible differences in preprocessing time and consistent performance
across models. During the training phase, our model exhibited superior
efficiency compared to state-of-the-art methods like DSMIL (Li et al.,
2021b), primarily due to the use of pre-trained backbone networks
as feature extractors, significantly reducing computational overhead.
Experimental results revealed that on the CAMELYON16 dataset, train-
ing 240 samples required a total of 345.33 s, averaging 1.44 s per
sample. Similarly, on the TCGA-NSCLC dataset, training 384 samples
took 146.10 s in total, with an average of 0.38 s per sample. In the
prediction stage, despite incorporating three predictors, each predictor
consists of only two to three lightweight fully connected networks
(MLPs), ensuring low computational complexity and maintaining high
efficiency. Specifically, for the CAMELYON16 dataset, predicting 60
8 
Table 6
Training and testing time per sample for TCGA-NSCLC and CAMELYON16 datasets.

Dataset Train time (s/sample) Test time (s/sample)

TCGA-NSCLC 1.44 0.40
CAMELYON16 0.38 1.41

samples required 84.78 s in total, averaging 1.41 s per sample. On
the TCGA-NSCLC dataset, predicting 97 samples took 38.88 s, with an
average of 0.40 s per sample, as summarized in Table 6. These findings
underscore the competitive time efficiency of our model, demonstrating
its potential for practical applications.

5. Conclusion

In this paper, we introduced Pseudo-label Attention-based MIL
(PAMIL), a novel embedding-based approach for WSI classification.
PAMIL leverages pseudo-labels to highlight positive tissues during the
feature aggregation process and use a fine-tuning strategy to mitigate
false positives and data imbalance issues. Our experiments demonstrate
that PAMIL achieves superior performance even with reduced data
requirements by effectively concentrating on relevant regions.

However, this approach has some limitations. PAMIL’s reliance
on single-modality WSI data overlooks the benefits of multimodal
integration, and its performance may degrade in data-scarce or im-
balanced situations. Additionally, the current method lacks adaptive
segmentation strategies for diverse tissue types and may face effi-
ciency challenges, particularly with large-scale datasets. The reliance
on annotated data also poses constraints on scalability.

For future research, several avenues could be explored. First, incor-
porating multimodal data could enhance the model’s robustness and
accuracy. Second, investigating adaptive segmentation strategies across
tissue types and magnifications within WSIs could improve model
adaptability. We also aim to explore real-time processing techniques
and optimize performance for larger datasets. Finally, integrating ex-
pert pathologist knowledge into the computational process could im-
prove classification accuracy, especially in edge cases. Future studies
might also leverage feature pyramids to fully exploit information across
multiple layers of WSIs.



J. He et al.

C
S
t

c
m

Y

Engineering Applications of Artiϧcial Intelligence 142 (2025) 109908 
Fig. 5. Accuracy, Precision, and F1 scores under different sample proportions and groups.
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