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ABSTRACT

With the surge and widespread application of image generation
models, data privacy and content safety have become major con-
cerns and attracted great attention from users, service providers,
and policymakers. Machine unlearning (MU) is recognized as a cost-
effective and promising means to address these challenges. Despite
some advancements, image generation model unlearning (IGMU)
still faces remarkable gaps in practice, e.g., unclear task discrimi-
nation and unlearning guidelines, lack of an effective evaluation
framework, and unreliable evaluation metrics. These can hinder the
understanding of unlearning mechanisms and the design of practi-
cal unlearning algorithms.We perform exhaustive assessments over
existing state-of-the-art unlearning algorithms and evaluation stan-
dards, and discover several critical flaws and challenges in IGMU
tasks. Driven by these limitations, we make several core contribu-
tions, to facilitate the comprehensive understanding, standardized
categorization, and reliable evaluation of IGMU. Specifically, (1) We
design CatIGMU, a novel hierarchical task categorization frame-
work. It provides detailed implementation guidance for IGMU, as-
sisting in the design of unlearning algorithms and the construction
of testbeds. (2) We introduce EvalIGMU, a comprehensive evalu-
ation framework. It includes reliable quantitative metrics across
five critical aspects. (3) We construct DataIGM, a high-quality un-
learning dataset, which can be used for extensive evaluations of
IGMU, training content detectors for judgment, and benchmarking
the state-of-the-art unlearning algorithms. With EvalIGMU and
DataIGM, we discover that most existing IGMU algorithms cannot
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handle the unlearning well across different evaluation dimensions,
especially for preservation and robustness. Data, source code, and
models are available at https://github.com/ryliu68/IGMU.

Warning: This paper includes explicit sexual content and other
material that may be disturbing or offensive to certain readers.
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1 INTRODUCTION

Recent advancements in image generation models (IGMs) have
garnered widespread attention for their ability to produce images
from textual, visual, or multimodal prompts. Among these, Stable
Diffusion (SD) [42, 49] represents a groundbreaking innovation and
has emerged as a leading choice for generating diverse, high-fidelity
images, ranging from photorealistic scenes to imaginative artworks.
Despite this impressive potential, IGMs also pose new ethical, soci-
etal, and safety concerns: they can produce unsafe or undesirable
content, significantly hindering their practical deployment [28] and
legal compliance [50]. For instance, generating copyrighted artistic
styles without authorization has fueled debates around intellec-
tual property and copyright infringement [71]; generating harmful
or biased content poses risks to societal norms and safety stan-
dards [45, 79]. These highlight the urgent need for robust solutions
to ensure the ethical and responsible use of IGMs.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://github.com/ryliu68/IGMU
https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Figure 1: Core components of IGMU. ➊ CatIGMU: a framework

for unlearning task categorization and definition. ➋ EvalIGMU: a

framework for evaluating IGMU algorithms with various metrics at

both task-specific and general-purpose measurement. ➌ DataIGM: a

new dataset for exploring existing evaluationmeasures, training new

content detectors, and benchmarking SOTA unlearning algorithms.

Machine Unlearning (MU) [3] emerges as a promising solution to
mitigate the generation of unsafe content. MU has been extensively
studied in classification models [5, 18]. When applied to IGMs,
MU is typically instantiated as a concept-removal task that seeks
to erase sensitive or objectionable targets, such as specific styles,
objects, or harmful content while preserving the model’s ability
to produce high-quality, benign outputs [17, 27, 34]. For instance,
image generation model unlearning (IGMU) can eliminate artistic
styles like Van Gogh from a SD model. Then the output of a prompt
𝑝 = "A Van Gogh style picture about a man walking through wheat

fields" will align with that of 𝑝′ = "A picture about a man walking

through wheat fields" with similar image quality.
A number of image generation model unlearning (IGMU) al-

gorithms have been proposed. To gain a deep understanding of
these solutions, we conduct a series of empirical studies, to assess
their implementations, measurements, and effectiveness. Unfor-
tunately, we discovered several major limitations. (1) Non-specific
categorization of unlearning tasks. Existing methods address either
broad concepts or specific unlearning tasks, but do not carefully
distinguish them [15, 66, 77]. The lack of a systematic definition
and categorization of unlearning tasks can result in great incon-
sistencies and ambiguity in task analysis. (2) Undetermined goals

of unlearned model. Improper expectations of the unlearned model
greatly hinder the distinction of unlearning tasks and the design
and evaluation of accurate unlearning algorithms. (3) Unreliable
evaluation metrics. The metrics adopted in these works, including
both task-specific and general-purpose ones, cannot accurately re-
flect the unlearning impact. These three limitations undermine the
understanding and evaluations of existing unlearning solutions,
and could mislead the design of new methods.

To address these challenges, we present a systematic and com-
prehensive investigation towards IGMU. As shown in Figure 1, we
make three major contributions, to facilitate a comprehensive un-
derstanding, standardized categorization, implementation guidance,
and reliable evaluation of IGMU. First, we design CatIGMU, a
hierarchical framework that provides fine-grained unlearning task
categorization and definitions of unlearning goals. It categorizes un-
learning targets from two perspectives: spatial-scope relationship

and perceptual attributes. This provides detailed guidance for the
design and implementation of unlearning algorithms. Second, we
design EvalIGMU, a holistic and robust evaluation framework. It
integrates more accurate metrics across five critical aspects: Forget-
ting, Preservation, Image Quality, Robustness, and Efficiency. Third,
we curate a dataset, DataIGM, from diverse sources. It contains
high-quality samples tailored to IGMU, covering different scenar-
ios. This dataset serves as an important foundation for unlearn-
ing performance benchmark, and constructing content detectors.
Leveraging EvalIGMU and DataIGM, we benchmark ten state-
of-the-art unlearning methods, demonstrating that current IGMU
methods struggle to achieve satisfactory performance across these
evaluation dimensions, particularly in preservation and robustness.

Our contributions can be summarized as follows:
• We design CatIGMU, a systematic framework for catego-
rizing unlearning tasks based on spatial-scope relationships
and perceptual attributes. It benefits unlearning algorithm
design and evaluation benchmark construction.
• We propose EvalIGMU, a holistic evaluation framework
equipped with refined metrics, including Multi-head Clas-
sifiers, CSDR, and other reliable measures, to evaluate un-
learning performance across five critical aspects.
• We curate a high-quality dataset, DataIGM, incorporating
multi-source data, including real-world and generated im-
ages, to train the more reliable multi-classification content
detector and to evaluate the effectiveness of widely-used
unlearning methods across various tasks.
• Leveraging EvalIGMU and DataIGM, we conduct exten-
sive re-evaluations of ten state-of-the-art unlearning meth-
ods. Our results reveal critical shortcomings of these meth-
ods, particularly in achieving accurate unlearning, preserv-
ing unabridged benign content, maintaining high image qual-
ity, and ensuring robustness.

2 BACKGROUND AND RELATEDWORK

2.1 Conditional Image Generation

Multimodal large models have revolutionized artificial intelligence
by seamlessly integrating multiple modalities (e.g., text, images,
audio), driving unprecedented advancements in understanding and
generating diverse content [1, 2, 72]. By leveraging cross-modal
interactions, these models produce high-quality outputs tailored
to complex scenarios and applications. As an important member,
image generation models [38, 42, 69] excel at transforming noise
into high-quality images guided by signals from various modalities.

Recently, diffusion-based models, represented by Stable Diffu-
sion [49, 52], have achieved unparalleled efficiency and quality by
performing diffusion in lower-dimensional latent spaces. Lever-
aging pre-trained encoders like CLIP [46], Stable Diffusion out-
performs in a variety tasks like image synthesis [42, 60], inpaint-
ing [35, 51], and super-resolution [53, 62]. Its adaptability, photore-
alistic quality, and output diversity have solidified its dominance in
image-generation research [14, 40].

Proxy-based methods are commonly adopted to assess the per-
formance ofM via specific metrics on a subset of generated images
over prompts {𝑝𝑖 }. CLIP Score [24] measures the alignment by the
cosine similarity between the CLIP embeddings of text prompts and
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generated images; FID (Fréchet Inception Distance) [25] quantifies
the distributional similarity between generated and real images in
the feature space; LPIPS (Learned Perceptual Image Patch Similar-
ity) [74] evaluates the perceptual similarity based on deep feature
representations and correlates well with human judgments.

2.2 Image Generation Model Unlearning

Model Unlearning (MU) is a technique to erase the influence of
specific subsets of training data from a trained model in an effective
and economical manner [3, 9, 47]. For image generation models, it
can remove specific styles, objects, or harmful content (e.g., sexual
or violent elements) from a well-trained model, making it incapable
of generating images containing such content without affecting its
ability to produce other target-free images.

Various machine unlearning algorithms have been developed
specifically for image generation models. Early efforts, such as ad-
versarial training, aim to reduce the model’s sensitivity to specific
features. For instance, Wang et al. [63] modified latent representa-
tions to diminish the influence of specific text embeddings. More
recent methods, such as target concept forgetting [23, 73] andmodel
editing [7, 59], aim to disentangle and suppress undesired content in
the latent space by fine-tuning models with counterfactual prompts
or images explicitly designed to exclude target elements.

ESD [16] fine-tunes U-Net using negative guidance, aligning
the probabilities of the target concept with a null string to steer
predictions away from the erased concept. By focusing on the local
components in U-Net for higher unlearning efficiency, researchers
designed several methods that only edit the cross-attention lay-
ers [17, 19, 34, 64, 68, 73]. Specifically, UCE [17] optimizes the pro-
jection matrices using closed-form fine-tuning techniques, which
encourage the model to refrain from embedding residual informa-
tion of the target phrase into other words, thereby removing traces
of the given target in the prompt. RECE [19] aligns the embeddings
of inappropriate content with harmless concepts to achieve concept
erasure. FMN [73] minimizes the attention weights corresponding
to the target concept, gradually making the model disregard the
concept during image generation. To improve the robustness of
model unlearning against adversarial attacks that induce regen-
erating forgotten content via crafted prompts, AdvUnlearn [76]
integrates adversarial training for the text-encoder layer. Similarly,
SafeGen [33] targets internal model representations to mitigate
explicit content and ensure the ethical alignment of outputs.

2.3 Unlearning Evaluation

Existing works adopt diverse standards or principles to evaluate
the effectiveness of unlearning algorithms, which are normally
specific to the erased target (e.g., nudity, artist style, objects). They
utilize specific deep learning classifiers or detectors to measure
the unlearning effects and adopt some commonly used metrics for
assessing the model’s ability.

Content Detectors. The task-related measurements include Style
Classifier [77], Nude Detector [44], Q16 [56], GCD [11], et al.

Specifically, Style Classifier is fine-tuned from the ViTmodel [12]
on the WikArt [54] dataset to recognize artist styles; Nude Detector
is trained on a custom-collected dataset to identify various nudity
types, e.g., "BUTTOCKS_EXPOSED" and "ANUS_EXPOSED"; Q16

leverages the zero-shot capability of the CLIP model [46] to detect
harmful content, including sexual and violence; GCD is an open-
source detector for identifying celebrities. Additionally, ResNet-
50 [22] and YOLO [29] are also employed to recognize common
objects. Their detection accuracy of the images from the unlearned
model represents the unlearning performance.

Metrics. Some metrics adopted in image generation are used to
evaluate the performance of the unlearned model. E.g., Frechet
Inception Distance (FID) [26] assesses the quality of generated
images; LPIPS [75] evaluates the perceptual consistency between
the generated images and given anchor images; CLIP Score [24]
measures the semantic alignment between the generated images
and text prompts; CLIP Accuracy [67] quantifies the model’s ability
to distinguish outputs between the target and anchor prompts.

It is also important to assess the robustness of the unlearning al-
gorithm, i.e., whether the forgotten content can re-emerge or is still
retained. This can be achieved with adversarial attacks [8, 77] and
membership inference attacks [65]. Some methods, like Unlearn-
DiffAtk [77], P4D [8], PUND [20], Ring-A-Bell [61] and CCE [41],
systematically examine the residual traces of the forgotten concepts.
Those studies verify whether the forgotten content still reappears
when triggered by carefully crafted adversarial prompts.

Benchmark. UnlearnCanvas [78] and CPDM [37] evaluate the
performance of the unlearned models by constructing a benchmark
dataset to evaluate how unlearned models can forget certain tar-
gets they’ve learned. Recently, Ren et al. [48] introduced a Six-CD
benchmark to evaluate existing unlearningmethods across six tasks:
"harm", "nudity", "identities of celebrities", "copyrighted characters",
"objects", and "art styles". However, this benchmark only focuses
on the unlearning and retention aspects (including in-prompt and
out-prompt) while overlooking others, such as image quality, ro-
bustness, etc. Its evaluation relies heavily on existing detectors and
classifiers. Therefore, the evaluation reliability and confidence are
limited by the accuracy or potential issues of these measurements,
which will be validated by our subsequent empirical study.

3 PRELIMINARY & FORMALIZATION

3.1 Image Generation

Formally, a deep image generative model can be represented as
M : P → P(I), where the input P can be text strings, latent codes
(e.g., random noise) or conditional signals (e.g., gender, class label,
or reference images), and P(I) is the power set of the setI, for each
𝑝 ∈ P.M(𝑝) generates an image subset of I satisfying specific
requirements, including content alignment and image quality.

3.2 Image Generation Model Unlearning

Consider an image generation modelM with learnable parameters
Θ and the target content to be forgotten T ⊂ P, MU intends to pre-
ventM from generating images or content related to T achieved by
applying some unlearning algorithm A𝑢 : A𝑢 (M,T) → M𝑢 . The
unlearned modelM𝑢 should satisfy the following requirements:

R1 (Forgetting): ∀𝑡 ∈ T , M𝑢 (𝑡) ∩M(𝑡) = ∅;
R2 (Preservation): ∀𝑝 ∈ P \ T , M𝑢 (𝑝) ⊆ M(𝑝),
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In many scenarios, R2 can be relaxed as 𝑠𝑖𝑚(M𝑢 (𝑝),M(𝑝)) ≥ 𝜎 ,
where 𝑠𝑖𝑚(·, ·) is a similarity function and 𝜎 is a constant threshold.

The above requirements provide the conceptual formulation
grounded in the fundamental principles of these two aspects. For-
getting matches with the fundamental expectation of MU and
adopts the formulation adopted by recent concept-removal studies
[19, 23, 33, 34, 73, 76], that is, there is no overlapping (∅) for the gen-
erated images of the unlearned modelM𝑢 and the original model
M in terms of the forgotten target concept 𝑡 ∈ T . Preservation
establishes norms for the unlearned model from the perspective
of the model generation and generalization abilities by consider-
ing the non-target objects. In practice, task-specific detectors (e.g.,
style or nudity classifiers) provide a feasible quantitative proxies
for these criteria; their detection accuracy provides an intuitive
measure of forgetting and preservation quality that aligns with
real-world visual-perception and quantitative-evaluation needs.

However, the practical implementation of the ideal conditions
(R1 & R2) varies greatly across tasks due to properties of unlearn-
ing, e.g., it is non-unique, task-wise, and even subjective. Therefore,
following such basic requirements, we provide detailed catego-
rization, analysis, and guidance in Sec. 3.2 and sampling-based
evaluation implementations in Sec. 5.3.

Particularly for Text-to-Image models in our primary considera-
tions, we provide more fine-grained and complete notions for the
long prompt for MU, where the target unlearning content 𝑡 is only
part of the prompt text: it can be denoted as 𝑆 ⊕ 𝑇 where 𝑆 is the
remaining part of the prompt not related to the target forget, 𝑇 is
a placeholder for text-described target forget, and ⊕ denotes the
union of strings; it corresponds to the complete target prompt when
𝑇 ← 𝑡 , i.e., 𝑆 ⊕ 𝑡 . In the rest of this paper, we use 𝑡 to denote 𝑆 ⊕ 𝑡
for simplicity if this does not cause any ambiguity. We use BROWN
to highlight the target content in the text to be unlearned/erased.
These could include Artist Style with the prompt ‘A Van Gogh style

picture about a man walking through wheat fields’, Object with the
prompt ‘A red apple on the table’, or Harmful Content with the
prompt ‘A naked girl playing on a beach’, etc.

4 EMPIRICAL STUDY

4.1 Machine unlearning tasks for IGM

Current methods [16, 17, 34, 55, 58, 73] cover different unlearn-
ing tasks for IGM, including harmful content, copyright-related
(e.g., artistic styles), and privacy (e.g., individual faces like ‘Don-
ald Trump’). However, the same unlearning tasks may be referred
to and categorized differently across various works. For example,
ESD [16], SPM [36], and AdvUnlearn [76] refer to IGMU as "Concept
Erasure" and encompass the unlearning of Style (e.g., Van Gogh),
Object (e.g., Church or Parachute), and Concept (e.g., Nudity). Be-
sides, other works adopt varied terminologies and classifications.
For instance, AC [31] refers to objects as "specific object instances";
FMN [73], ConceptPrune [6], and MACE [34] label nudity unlearn-
ing as "Explicit Content", while other methods, such as KPOP [4]
describes it as "unethical content", RECE [19] and SLD [55] classify
it as "inappropriate concepts", SDD [30] and CCE [41] group it un-
der "NSFW". Therefore, such diversity of tasks and inconsistency
in task naming and categorization result in great confusion in the

definition and understanding of unlearning tasks, and fail to reveal
and explain their nature and differences accurately.

What is the relationship between the unlearning of "Van Gogh
style", "nude girl", and "Blue Sky"? From the perspective of forget-
ting and preservation, can the same unlearning method be applied
to different unlearning tasks like an "Apple", "Donald Trump", a
"Spiderman", and a "Rabbit"? As we can see, those case-by-case and
task-dependent methods fail to capture the essential relationships
(differences and similarities) behind a wide range of different task
instances, either making the unlearning methods not universally ap-
plicable or generalizable, or causing unnecessary costs of repeated
discovery due to a serious underestimation of their capabilities.
Furthermore, it hinders the guidance and implementation of the
unified design and consistent evaluation of unlearning algorithms.

Observation 1. Real unlearning requirements for IGM are

diverse, and existing machine unlearning methods cover vari-

ous unlearning tasks. However, there are lots of inconsistencies

and even conflicts in naming and categorization for those tasks;

existing methods usually solve them in a case-by-case and

task-dependent manner, without considering the relationship

between tasks and the generalization of the methods.

4.2 Unlearning Achievement and Expectation

R1-R2 in Sec. 3.2 provide the basic requirements for the goal of the
unlearned modelsM𝑢s; their implementation counterparts show
the content and form of the actual image, and can correspond to the
user’s expectations ofM𝑢s behavior, which can be a resource (e.g.,
training data) for those content detectors and the ground truth as a
reference for accurately evaluatingM𝑢 ’s performance.

Taking the possible expectations we can conceive & design and
the possible outputs of the existing works into consideration, Fig-
ure 2 exhibits specific examples for some random selected unlearn-
ing tasks, including "nude girl", "Van Gogh style", and "parachute",
and five state-of-the-art unlearned modelsM𝑢 for the case study.
Specifically, Fig. 2(a) gives the prompt ‘𝑆 ⊕ 𝑡 ’ highlighted with un-
learning targets ‘𝑡 ’ and the corresponding output of the original
modelM; Fig. 2(b) exhibits some possible outcomes forM𝑢 that we
can conceive and construct that satisfy the previous requirements,
the detailed explanation is deferred to Sec. 5.2; Fig. 2(c) shows that
the output of the unlearned model based on the unlearning meth-
ods, including ESD [16], MACE [34], Receler [27], UCE [17], and
SPM [36]. The possible outcomes in Fig. 2(b) include:
• Expectation: They are designed to erase the target unlearn-
ing content related to ‘𝑡 ’ while preserving other elements
in the original image as much as possible. Multiple different
results meet the requirements for each case.
• Default: They are the pre-set default placeholder of a model.
Here, we take a black image as an example.
• NULL: They are the generated images ofM correspond-
ing to the prompt ‘𝑆’, i.e., removing the target ‘𝑡 ’ and its
associations parts in the original prompt.
• Replace: They are any real images unrelated to ‘𝑡 ’ or any
generated images ofM corresponding to the prompt ‘𝑆 ⊕𝑇 ’
with 𝑇 ≠ 𝑡 , i.e., replacing the target 𝑡 in the original prompt
with other unrelated content.
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Figure 2: Case study showcasing various post-unlearning candidates and images from existing unlearned models. Columns from left to right:

(a) prompts and corresponding images generated byM; (b) the expected outputs alongside other potential outputs for post-unlearning; (c)

images generated by different unlearned models. From top to bottom, these cases include Nudity, Van Gogh, and Object (parachute) unlearning.

Text highlights the target word(s) 𝑡 to be unlearned and Text indicates the associations that should be erased together with the target word(s)

during the unlearning process, i.e., ‘𝑆 ’.

• Any: They are any real images unrelated to ‘𝑡 ’ or generated
images ofM for any prompt that does not contain ‘𝑡 ’.

Expectation is carefully constructed, following the require-
ments seriously, for each generated image of interest; it is task-
dependent and has high quality; Default is some easy-configured
but trivial outcomes; NULL can generate diverse images with a
high probability, but it is still possible to generate images related to
‘𝑆 ⊕ 𝑡 ’; Replace explicitly excludes content related to ‘𝑡 ’ and keeps
the remaining for ‘𝑆 ’, but it may not completely faithfully retain or
present the elements related to ‘𝑆 ’ in the original generated image
in the same way, because it is not as finely controlled as Expec-
tation; Any can explicitly exclude content related to ‘𝑡 ’, but does
not make clear constraints on the preservation content. It can be
seen that Expectation is the only one that perfectly and accurately

meets the expectation for the behavior of the corresponding unlearned

modelM𝑢 . Besides, the above analysis’s conclusions are consistent
with our observations for our considered cases in Fig. 2(b), and the
Expectation, as the best one, also has great differences for different
tasks: its effect (forgetting or preservation) on the image may be on
local elements (e.g., "nude girl") or all elements of the entire image
(e.g., "Van Gogh style").

Those existing works in Fig. 2(c) covers different unlearning
strategies, including remapping and alignment of the embedding
spaces or directed updates of the model parameters. From the multi-
perspective evaluation of their results, it can be seen that the av-
erage performance on different tasks is different overall, perhaps
reflecting the difficulty of the task. For example, judging from the
visual, the performance of most methods for the unlearning of "Van
Gogh style" is better than the other two tasks; and the output results
of different methods for the same task are quite different, and each
method has inconsistent performance on different tasks. In addi-
tion, they suffer from the following issues: either the target content
of ‘𝑡 ’ is not forgotten, such as ESD, UCE, and SPM on "nude girl"
unlearning, or the content related to 𝑆 is not accurately preserved,
such as ESD and Receler on "parachute" unlearning, or the quality
of the generated image is seriously damaged, such as Receler and
UCE on "nude girl" and "parachute" unlearning tasks.

Observation 2. The goal of the unlearned modelM𝑢 and

expectation for its behavior are task-dependent, and ‘Expecta-
tion’ becomes the only one that well satisfies all requirements

(R1-R2). Existing unlearning methods have inconsistent per-

formance over different tasks and suffer from various issues

related to forgetting, preservation, image quality, etc.

4.3 Evaluation of the IGMU Evaluation

For those unlearning tasks commonly used in existing SOTA works
[16, 19, 34, 36, 67, 73, 76], that is, unlearning of Nudity (e.g., nude
girl), Artist Style (e.g., Van Gogh style), and Object (e.g., parachute
and church), as demonstrated in Figure 2, we quantitatively evaluate
the reliability of the widely used evaluation methods (i.e., Content
Detectors) and metrics. To this end, based on the discussion about
the expectation of an unlearned model in Sec. 4.2, we build a well-
curated test bed,DataIGM (detailed information is given in Sec. 5.4),
by integrating multi-source data.

Evaluation testbed. For each task, the construction of DataIGM
consists of the following three parts:
• REAL: They are the real dataset used to train the correspond-
ing detectors (including training and test/validation sets),
e.g., WikiArt for Style Classifier.
• LAION : They are (part of and randomly selected) the real
dataset used to train the original modelM.
• SD-GEN : They are the generated images corresponding to
M(𝑆 ⊕ 𝑡) andM(𝑆).

In terms of data split, the training (test/validation) set of REAL
belongs to the training (test) of DataIGM. In the following subsec-
tions, only the corresponding test set for each task of DataIGM is
used for evaluation.

4.3.1 Style Unlearning. Style Classifier (SC) is widely adopted to
detect specific artist styles [20, 77, 78]. We use Accuracy, Precision,
Recall, and F1 Score as metrics to evaluate SC for the unlearning of
Van Gogh style on DataIGM, and the result is shown in Fig. 3.

SC achieves the best results on REAL across all metrics, but per-
forms poorly on LAION and SG-GEN except for Precision, although
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Figure 3: The performance of Style Classifier on DataIGM.

Table 1: The evaluation results of NudeNet and Q16 for Nudity un-

learning task on DataIGM.

Evaluator Data Accuracy Precision Recall F1 Score

NudeNet

REAL 74.68 98.96 49.89 66.34
LAION 75.18 98.65 51.07 67.30
SD-GEN 78.31 99.58 56.86 72.89

Q16

REAL 60.76 69.24 38.74 49.68
LAION 59.98 87.48 23.30 36.80
SD-GEN 52.51 88.38 5.78 10.85

the results on SG-GEN are slightly better than those of LAION.
Therefore, although SC maintains its performance when applied
to REAL that is I.I.D. with its training data, it does not have strong
generalization ability over other real data (i.e., LAION ) and gener-
ated images (i.e., SD-GEN ), which may result from its overfitting
to training data or the distribution shift between its training set
and test sets here. Thus, SC has serious drawbacks when applied to
a wide range of unlearning model evaluations, which will lead to
unreliable results.

4.3.2 Nudity Unlearning. NudeNet [44] as detector and Q16 [56]
as classifier are widely adopted for evaluation [8, 16, 19, 41, 43,
55, 61, 70, 77]. NudeNet1 can detect explicit body parts2; Q16 is
designed to label images as either safe or harmful (including nudity).
Table 1 summarizes the evaluation results of them on DataIGM3

NudeNet achieves near-best Precision but has poor performance
across other metrics, where its recall is only near 50%; there is no
significant difference in its performance between different data. In
addition, it is also challenging to detect all sensitive parts in the
image accurately and completely. Q16 has inferior performance
across all metrics and all data, its Accuracy is no more than 61%
and Recall is less than 40%. Among the three data, it performs best
on REAL and worst on SG-GEN — its Accuracy is near to random
guessing and Recall less than 6% although with the best Precision,
such a result may be attributed to the distribution shift of the
generated data compared to the real data. Therefore, NudeNet and
Q16 have significant limitations that prevent their applicability in
evaluating the performance of the unlearned model for the Nudity

1https://github.com/notAI-tech/NudeNet.
2Following common settings in existing works, the sensitive parts in-
clude "MALE_BREAST_EXPOSED", "MALE_GENITALIA_EXPOSED", "FE-
MALE_BREAST_EXPOSED", "FEMALE_GENITALIA_EXPOSED", "BUT-
TOCKS_EXPOSED", and "ANUS_EXPOSED".
3Here, REAL of DataIGM only contains the training and test set used for NudeNet
training, while the data corresponding to Q16 are not publicly available.

Table 2: The detection results of ResNet-50 on DataIGM.

Task Data Accuracy Precision Recall F1 Score

Parachute
REAL 99.00 100.00 98.00 98.99
LAION 91.75 100.00 83.50 91.01
SD-GEN 85.05 99.86 70.20 82.44

Church
REAL 87.00 100.00 74.00 85.06
LAION 78.10 100.00 56.20 71.96
SD-GEN 87.90 100.00 75.80 86.23
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Figure 4: CLIP Score distribution for Nudity unlearning and Van

Gogh style unlearning. Here, w indicates the presence of the target

word(s), while w/o denotes its absence.

unlearning task. Similarly, the evaluation conclusions about the
Nudity unlearning tasks are unreliable and inaccurate.

4.3.3 Object Unlearning. ResNet-50 [22] pre-trained on ImageNet [10]
is used to detect the target object in an image for the success of
erasing [15, 17, 65, 66, 77]. The unlearning of church and parachute
are considered here, and the results are listed in Table 2.

ResNet-50 achieves near the best Precision for both tasks, but
there exist obvious differences in its performance on these two
tasks across other metrics — performance for parachute unlearning
is better than for church unlearning. In addition, for church, the
results for REAL and SD-GEN are similar, but significantly better
than LAION, which indicates that the previous two data resources
have similar distribution while LAION has a great distribution shift
leading to poor adaption; for parachute, due to the distribution shift
between different real data and between real data and generated
data, there are differences in performance on different data: REAL
performs best (i.e., well-generalized for I.I.D. data), LAION is second,
and SD-GEN is the worst. Therefore, ResNet-50 has inconsistent
performance across different tasks and cannot be well suited for out-
of-distribution data and generated data from Objects unlearning,
which will lead to unreliable evaluation results.

4.3.4 Task-FreeMetrics. CLIP Score andCLIPAccuracy is widely
adopted by existing works[31–34, 36, 66, 67, 76] and can be used to
evaluate the unlearning effectiveness w.r.t. R1-R2.

For CLIP Score, we conducted experiments with four types of
text-image pairs for each unlearning task. Specifically, we label
the images generated byM with 𝑆 ⊕ 𝑡 and 𝑆 as "forgot" and "re-
tain", respectively. We then calculated the CLIP Scores for two text
prompts, 𝑆 ⊕ 𝑡 and 𝑆 , with the "forgot" and "retain" images, re-
spectively. Thus, it leads to four categories: forgot-𝑤 , forgot-𝑤/𝑜 ,
retain-𝑤 , and retain-𝑤/𝑜 , where𝑤 means with the target word(s) 𝑡 ,
𝑤/𝑜 means without the target word(s) 𝑡 . Fig. 4 shows the distribu-
tions of these four categories for the unlearning tasks of "Nudity"
and "Van Gogh style", and there is substantial overlap among them,

https://github.com/notAI-tech/NudeNet
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Table 3: The CLIP Accuracy results on DataIGM.

Task Data Accuracy Precision Recall F1 Score

Van Gogh style
REAL 66.40 68.75 60.10 64.16
LAION 70.24 71.63 67.00 69.26
SD-GEN 87.03 94.37 78.80 85.86

Nudity
REAL 66.05 68.54 59.30 63.61
LAION 82.07 85.03 77.80 81.27
SD-GEN 77.92 69.54 99.40 81.82

Parachute
REAL 100.00 100.00 100.00 100.00
LAION 99.40 98.81 100.00 99.40
SD-GEN 98.55 98.12 99.00 98.56

Church
REAL 100.00 100.00 100.00 100.00
LAION 99.90 99.90 99.90 99.90
SD-GEN 99.45 99.80 99.10 99.45

which indicates that the CLIP Score is insufficient for reliably de-
termining whether generated images still retain target content.

For CLIP Accuracy, we conduct experiments on the test set of
DataIGM across four tasks and specify the used (target, anchor)
prompt pair of each task as: ("nude", "properly dressed") for Nu-
dity unlearning, ("with Van Gogh style", "without Van Gogh style")
for Style unlearning, ("church", "bird") and ("parachute", "bird") for
Object unlearning. As the results in Table 3 show, CLIP Accuracy
performs well for the Object unlearning tasks and clearly distin-
guishes between the generated images and the target and anchor
prompts. In contrast, it becomes less effective for the rest of the
unlearning tasks, particularly on the REAL data. For Van Gogh style,
among three data, SD-GEN performs best, LAION is second, and
REAL is the worst; while for nude, LAION performs best, SD-GEN
is second, and REAL is the worst. Such results reflect the incon-
sistent influence of different types of data on CLIP Accuracy and
its instability for different tasks. Therefore, it is also not a widely
applicable and stable evaluation metric.

Observation 3. Those task-dependent unlearning evalu-

ation measurements (content detectors) have major flaws to

varying degrees, and their performance is inconsistent across

tasks or even for different instances of the same task; the re-

sultant evaluation results based on them are inaccurate and

unreliable due to the distribution shift of the test data. Those

task-free metrics (CLIP Score and CLIP Accuracy) also can-

not provide reliable evaluation for unlearned models; their

results are neither sufficient nor consistent between different

unlearning tasks, which makes them not widely applicable.

5 OUR CONTRIBUTIONS

As summarized in the key observations in Sec. 4, those issues of
the existing works involve the unlearning task itself, the behav-
ioral expectations of the unlearned models, and the measurement
and evaluation metrics. They will cause great obstacles and dif-
ficulties for researchers to accurately understand the unlearning
mechanisms and evaluate the proposed algorithms, seriously un-
dermining the reliability of conclusions drawn from past studies.

It becomes increasingly urgent to establish a comprehensive and
standardized study for the analysis and evaluation of IGMU. We
introduce two complementary frameworks to address this need
and build a carefully curated dataset as a reference for the common

unlearning tasks. Specifically, (1) CatIGMU is a hierarchical frame-
work that categorizes and unifies different types of unlearning tasks
and their interrelationships (Sec. 5.1) and provides detailed imple-
mentation guidance (Sec. 5.2). (2) EvalIGMU is a holistic evaluation
framework for accurately assessing diverse unlearning algorithms
(Sec. 5.3) and provides a detailed implementation by incorporating
effective metrics. (3) DataIGM is a multi-sourced dataset across
commonly-used unlearning tasks as a test-bed implementation
based on CatIGMU. It could be used for multiple purposes: analyz-
ing content detectors and quantitative metrics in existing IGMU
works (Sec. 4.3); training new and reliable detectors for unlearning
tasks; and evaluating existing IGMU algorithms (Sec. 5.4). Below,
we present detailed descriptions for the design of each contribution.

5.1 CatIGMU Framework

We propose CatIGMU, a comprehensive hierarchical framework to
categorize and unify those complicated unlearning tasks for IGM,
Figure 5 illustrates the overview of the framework and specific task
instances, additional cases are presented in Table 5.

Design Principle: To accurately determine and differentiate those
complicated tasks of unlearning for IGM and to explore the essen-
tial ‘order world’, we decompose and categorize them following a
hierarchical structure based on the following criteria,

(1) Spatial Relationship: investigate whether the forget target
fills 4 the entire limited image canvas and thereby divides it
into Global and Local at the first tier.

(2) Perceptual Attribute: according to the perceivable nature
of the forget target, it can be divided into Abstract and Con-

crete at the second tier.
(3) Tasks & Semantic Association: aligning with existing un-

ambiguous and explicit tasks in IGM, it can be further refined
into Style, Entity, Status, Property, Collective Concept

5 at the
third tier. Meanwhile, it considers the semantic associations
between the forget target as an adjunct and its associated
subjects in the grammar of the prompt text.

Therefore, we not only consider the context in which the tar-
get is located but also include the properties of the target itself as
matter and the semantic associations for nature language in text
prompts, which derives distinctive unlearning tasks for different
targets in different environments within a limited space. As a result,
we achieve a hierarchical categorical framework through the combi-
nation of mutually exclusive dimensions, which can also be flexibly
expanded to include other new tasks that may arise in the future.
Consequently, such a comprehensive categorization framework
will benefit the unification & differentiation of various unlearning
tasks, the design of new unlearning algorithms, and the comparison
of different unlearned models for accurate performance evaluation.

Framework Interpretation: Here, we elaborate on the details of the
CatIGMU framework and its components. Given any target content
with prompt 𝑡 ∈ T ⊂ P to unlearn, we determine the category of
4In practice, we can use a threshold-based approach to determine the proportion of
the target content in the entire image canvas for its belonging here.
5Although we have tried our best to avoid overlap for this category division, there may
still be some task that belongs to multiple categories, which stems from the complexity
and subjective judgment of natural language semantics. Besides, those unlearning
tasks can also be flexibly extended and added.
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Figure 5: Overview of CatIGMU framework. Based on the spatial relationship between the unlearning target 𝑡 and image canvas (global vs.

local), the perceptual attributes of the unlearning target 𝑡 (abstract vs. concrete), and different unlearning tasks (style, object, identity, etc.),

CatIGMU constructs a hierarchical structure for systematic analysis and clear differentiation. Each task is instantiated at the leaf node, and the

unlearning target 𝑡 is highlighted with the BROWN text; solid (dashed) frames indicate strong (weak/near-independent) semantic association

between the forget target and its associated subjects in prompt text, especially for ‘Local’-‘Abstract’.

the corresponding unlearning task by traversing CatIGMU from
top to bottom to facilitate the subsequent process, e.g., evaluation.

Investigating the spatial relationship, it will divide into two
branches: Global and Local. The Global section considers the situa-
tion where the target content (almost, if not all) covers the entire
canvas, and its forgetting would have an overall impact on the
entire image. At the next layer down this branch, the Abstract can
be used to represent a kind of Style, a general class, including Theme
and Style, Material, Photo Filter, etc.; the Concrete covers tan-
gible Entity that span almost the whole scene reflected in the image,
which can be Blue-Sky, Ocean, Desert, etc.

The Local section considers more common cases where the target
content is only part of the image and usually accompanies other
elements in the image; thus, its removal has a limited impact on
the main content of the original image. At the next layer down
here, the Abstract corresponds to some descriptive Status, Properties,
Virtual or Collective Concepts, for example, Nude Girl, White Dog,
and Violence. In addition, further analysis in terms of grammar
and semantics shows that the target unlearning content here as
an adjunct may be strongly bound to the associated object, which
could be default missing; for example, Nudity can usually only
refer to people; while other target content and the associated object
are weakly related or nearly independent, such as the relationship
between white and dog for White Dog unlearning. Therefore, we
use solid and dashed frames to differentiate the above two cases. For
the Concrete, it includes one type of perceptible things or people,
such as Occupation, Person, specific Objects, Brand, and so on. For
instance, it can be Doctor, Donald Trump, Church, Apple logo, etc.

Note that in addition to the above text description and definition,
the differences and impacts of such categorization on subsequent
processing will be elaborated in the next subsections.

5.2 Detailed Implementation Guidelines

We have the fundamental questions: How should the unlearned

modelM𝑢 perform? Does it really align with our expectations?

Although the basic concept and requirements for machine un-
learning for the image generation models are introduced in Sec. 3,

their specific implementation and correspondence to specific tasks
are still unclear, especially the determination and measurement
of forgetting (R1) and preservation (R2) — this is the essential
difference among the above categories about unlearning tasks.

In terms of forgetting, the format of the generated image of
M𝑢 (𝑡) for any 𝑡 ∈ T could be diverse across different tasks and
even become non-unique; as for preservation, it could be defined
at both set-level (images for other target-unrelated prompts) and
sample-level (maintain remaining elements in the image except for
the target unlearning content w.r.t. 𝑡 ). Therefore, these two aspects
jointly determine the expected outcomes ofM𝑢 for various tasks.

Our hierarchical frameworkCatIGMU enables the task-dependent
expectations for modelM𝑢 ’s behavior to become categorically in-
tegrated and consistent; it would also be conducive to the stan-
dardized solution of existing issues of model outcomes (i.e., Obs. 1-
Obs. 2), including its complexity and non-uniqueness, as well as
the inappropriateness and ambiguity in existing work.

For all categories, as one of the trivial outputs,M𝑢 (𝑡) can directly
use "cannot generate the content related to [$𝑡$]" as output content
of the generated images, which is an over-simplified approach and
will cause the loss of detailed information. Another trivial one is to
indiscriminately replace the target content in the generated image
with Any other element that is not related to 𝑡 , which may cause
great confusion in use and damage the user-friendliness of the
model. Therefore, we have the following refined version.

1 For the ‘Global-Abstract’ category, w.l.o.g., we assume the tar-
get unlearning content plays a role of transforming the real scene

6.
Thus, as the preservation content,M𝑢 (𝑡) will be expected to the
real scene before 𝑡 ’s transforming for 𝑡 ∈ T or after applying the
other transforming except for 𝑡 ; for each sample,M𝑢 should behave
consistently withM for other prompts 𝑝 ∈ P \ T .

6Admittedly, it is extremely difficult to determine whether such a transformation,
especially the artist’s style, is realism or abstraction — perhaps the artist himself
cannot define herself, let alone those who have passed away. Moreover, the formation
of a work of art is a complex process, which may be the result of the joint action of
factors such as physical inspiration and artistic imagination. Therefore, the assumption
here for the Artist Style is just a simplification.
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2 For the ‘Global-Concrete’ category, compared to ‘Abstract’,
the target unlearning content corresponds to the overall physical

object in the original real scene in an image. Thus, whenM𝑢 re-
ally forgets, at the sample level, each output image ofM𝑢 (𝑆 ⊕ 𝑡)
should not contain the related content/objects corresponding to
𝑡 ∈ T , so it can be replaced by any other default placeholder image
(e.g., any solid color image, random image, mosaic, blank, etc.). For
the preservation,M𝑢 (𝑆 ⊕ 𝑡) should maintain the remaining part
originally associating with/accompanying target forget content if
it exists, e.g., Ship in the Ocean and Cloud in Sky can be generated
in other backgrounds, except Ocean and Sky, respectively;M𝑢 (𝑝)
follows those of 1 for other prompts 𝑝 ∈ P \ T .

For the ‘Local’ section, one of the trivial forgetting ways is to
directly remove/erase the correspondence to 𝑡 ∈ T completely in the
generated image, including the adjunct object itself and its affiliated
attributes if it exists, especially for the long prompt, the case where
the target unlearning 𝑡 is only part of the long prompt text, for
instance, ‘A naked girl playing on a beach’ and ‘A red apple on the

table.’, . . . . However, direct removal, in a simple and coarse-grained
way, will result in significant changes in image content and might
destroy the complete expression of the original prompt semantics.
So we have a specific discussion under the different categories for
‘Local’ as follows.

3 For the ‘Local-Abstract’ category, except for direct complete
removal, we would like to provide a more detailed and fine-grained
analysis at the sample level: for each image generated byM(𝑆 ⊕ 𝑡),
the forgetting can be implemented by removing or modifying (edit-
ing) the parts that are directly related to 𝑡 while maintaining the
remaining parts about 𝑆 . For example, Status unlearning for the
prompt ‘A naked girl playing on a beach.’, as the strong association
case, can be achieved by dressing sensitive exposed parts 7 of the
human body, thus satisfying both forgetting (i.e., naked) and preser-
vation (i.e., a girl playing on a beach.). White Dog unlearning, as
the independent association case, can be achieved by simply edit-
ing and changing the hair color of the object (Dog) in the image
while maintaining the properties of all other aspects of the dog
(i.e., actions, expressions, etc.) and other elements (i.e., background,
scenery) in the image; Violence unlearning can be achieved by
replacing or modifying the corresponding attributes or elements in
the original generated image ofM(𝑆 ⊕ 𝑡) with some benign ones
without affecting other elements and parts.

4 For the ‘Local-Concrete’ category, the target content related to
𝑡 ∈ T is just (a small part(s) of) something concrete of a generated
image inM(𝑆 ⊕ 𝑡). Therefore, for each generated image, besides
the direct removal,M𝑢 (𝑆 ⊕ 𝑡) can use another unrelated counter-
part to replace the target corresponding to 𝑡 or modify the content
so that it is no longer (can’t be identified as) the original entity
while preserving other elements about 𝑆 in the original image. For
example, ‘a church next to a river’. Nonetheless, it is important to
note that it is extremely difficult to determine which features are
unique to the target content and which characteristics define and
decide the target itself, which may also depend on society and hu-
man common but dynamic cognition, as well as the model’s status;
thus, this makes it difficult to determine the minimum scope of
7Note that the definition of "sensitive parts" here is complex and non-uniform, which
depends on the constraints of different cultural, religious, social customs and other
factors, so it also relies on the specific situation.

modification in the image in some cases. For instance, Object un-
learning can be achieved by replacing the target Entity in the image
inM(𝑆 ⊕ 𝑡) with various different alternatives; Person unlearning
may be influenced by the bias status ofM for 𝑡 ∈ T and user’s

specification and the training data ofM.
However, it must be admitted that in the above discussion, we

are considering unlearning tasks that are widely covered in existing
work, and there might be some that are not fully considered or un-
known that are beyond the coverage of our CatIGMU. In addition,
determining whether to completely forget or preserve is subjective
to a certain extent and might be a matter of opinion; How to pre-
cisely implement the above expectations at the sample level, what
measurement metrics should be used, and how to measure them
accurately are also challenging problems. Although CatIGMU is
carefully designed and strives to be perfected, it is still rudimentary
and immature. We also expect that it can be continuously improved
and enriched to include enough different unlearning tasks and
scenarios for image generative models flexibly.

Furthermore, such data pair (the prompt 𝑡 ∈ T and the expected
content in the generated image) with clear correspondence for
target unlearning content, as discussed above, will be critical for
those fine-tuning-based unlearning approaches as feedback; it is
also fundamental as a test bed or benchmark for the evaluation of
different unlearning methods across various unlearning tasks.

Lemma 1. Our CatIGMU framework and the above implementa-

tion guidelines can provide insights and specifications into the nature

of the IGMU problem, and thus help in the design of unlearning algo-

rithms A𝑢 and the construction of related test beds or benchmarks.

Prompts Variations. Except for the above-expectation behavior of
M𝑢 for the prompt “𝑆⊕𝑡”, under the causal inference paradigm [13],
we probe other prompt variations by applying intervention operator
to 𝑇 of the text prompts 𝑆 ⊕ 𝑇 . Consequently, we have,

𝑃-1 𝑑𝑜 (𝑇 = ‘none’): just replace the target unlearning 𝑡 and its
associations with ‘none,’ i.e., only 𝑆 remains in the prompt.

𝑃-2 𝑑𝑜 (𝑇 ≠ 𝑡): just like the counterfactual setting by replacing 𝑡
with others 𝑡 ≠ 𝑡 , leading to 𝑆 ⊕ 𝑡 , in the prompt.

𝑃-1 corresponds to anAutomatic Intervention; 𝑃-2 can be interpreted
as a Soft Intervention. They are similar to the setting of NULL and
Replace in Sec. 4.2, respectively. Given the defects and possible
ambiguity of the outputs ofM for theNULL andReplace strategies
discussed previously, an ideal unlearned modelM𝑢 should forget
the content about 𝑡 completely and will no longer generate related
images, no matter what prompt is used. Therefore,M𝑢 (𝑃-1) and
M𝑢 (𝑃-2) should keep the same as the above-discussedM𝑢 (𝑆 ⊕ 𝑡).

Case Study. Taking specific downstream unlearning tasks cor-
responding to CatIGMU and Figure 5 as examples, Tab. 4 lists
some instantiation of the above four categories (Van Gogh style,

Blue Ocean, Nudity (naked girl), and Apple) and summarizes the
text-described expectations of the generated images ofM𝑢 .

We enumerate examples (the target forgetton 𝑡 ) as the instantial-
ization of each unlearning task outlined in EvalIGMU framework
in Tab. 5.
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Table 4: Guidelines for what the expected outputs should be when implementing unlearning for different cases.

Target Original Prompt: 𝑆 ⊕ 𝑡 Forgot

Output ofM𝑢 (𝑆 ⊕ 𝑡)
Expectation Trivial solutions

Global Abstract

Style

A Van Gogh style picture

about a man walking

through wheat fields.

Van Gogh style
A realistic or other artistic style
picture about a man walking

through wheat fields.

"I cannot generate images with

Van Gogh style."

Global Concrete

Object

Blue oceans.

The entire
image content

A default image, i.e., a solid color
or random noise. "I cannot generate the oceans."

Local Abstract

Status

A naked girl playing on a

beach.

Nudity
elements A clothed girl playing on a beach. "I cannot generate the naked

girl.".

Local Concrete

Entity

A red apple on the table. Apple
1) Table[remove].
2) Table with any other

objects[replace].
"I cannot generate the apple".

Table 5: Examples of unlearning tasks and categories under the

CatIGMU framework.

Tasks Examples

Art Style Van Gogh, Monet, Picasso, Cubism, Realism, ...

Theme Nature, Fantasy, Sci-fi, Mythological Scenes, ...

Material Wood, Stone, Steel, Glass, Plastic, Marble, ...

Photo
Filter Vintage, Black & White, Sepia, Warm Tone, ...

Color Tone Warm, Cool, Monochrome, Pastel, Vibrant, ...

Descriptive
Status Blue Sky, Starry Sky, Sea, Desert, Clouds, ...

Descriptive
Status Nude Girl, Naked Person, Running Tiger, ...

Properties Black Crow, Striped Zebra, White Dog, ...

Collective
Concept Racial Bias, Violence, Drugs, Harassment, ...

Occupation Doctor, Nurse, Police Officer, Firefighter, ...

Person Donald Trump, Elon Musk, Taylor Swift, ...

Object Church, Parachute, Bird, Cup, Airplane, Car, ...

Brand Icon Nike, Apple, Samsung, Google, Coca-Cola, ...

5.3 Evaluation Framework & Implementation

Considering the major flaws in current measurements as shown
in Sec. 4.3 and the urgent need for a comprehensive and accurate
evaluation of machine unlearning methods, we propose EvalIGMU,
a holistic and systematic evaluation framework for the unlearning
algorithms for IGM and the unlearned model, i.e., A𝑢 andM𝑢 .

Based on the requirements R1-R2 of IGMU tasks in Sec. 3 and
other requirements of IGMU, EvalIGMU considers the following
five aspects. Figure 6 provides an overview and possible metric
instances about EvalIGMU.

Given        ,       and unlearn target 𝒕

Forgetting Preservation Image Quality Robustness

Multi𝑪𝒍𝒇 CSDRYOLO LPIPS FID UnlearnDiffAtk

Eval V3

Efficiency

Weights

& time

EVALIGMU

Figure 6: The overview and implementation of the proposed evalu-

ation framework, EvalIGMU, for machine unlearning for IGM. It

considers five aspects: Forget, Preserve, Image Quality, Robustness,
and Efficiency. Some quantitative metrics are listed for each of them

as one implementation of EvalIGMU.

• Forgetting: Whether the forgetting requirement R1 is met,
i.e., whether the target forget content is completely removed
in the generated images ofM𝑢 (𝑡).
• Preservation:Whether the preservation requirements are
met, i.e., whether the generated images ofM𝑢 (𝑡) andM𝑢 (𝑝)
retain the corresponding parts that should be retained accu-
rately and completely.
• Image Quality: Evaluate the quality of the generated im-
ages from bothM𝑢 (𝑡) andM𝑢 (𝑝), including the fidelity,
aesthetics, and text-image alignment, etc. [21].
• Robustness:MeasureM𝑢 ’s resistance against regenerating
any unlearned content related to 𝑡 ∈ T for some malicious
inputs design, e.g., text-perturbation or jailbreak.
• Efficiency: Evaluate the computational efficiency of the
unlearning algorithm A𝑢 in derivingM𝑢 fromM, as well
as the scalability of M𝑢 . For instance, assess whether it
supports simultaneous multi-target unlearning.

5.3.1 Implementation. Relying on the empirical verification and
key observations in Sec. 4, to provide a feasible and reliable imple-
mentation for the EvalIGMU framework, we carefully examine the
existing relevant quantitative metrics for their effectiveness and
select some reliable ones or design some more effective ones for the
above five aspects. The detailed metrics are summarized as follows.

Forgetting: Under the model-based paradigm, we adopt the
Classification Accuracy of a new multi-head classifier, MultClf , to
reflect the unlearning performance. TheMultClf is fine-tuned from
the CLIP-ViT model [46] over DataIGM. With the shared feature
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extractor, different heads of MultClf can be used for various IGM
unlearning tasks. More details of MultClf will be introduced later.

Preservation: The following metrics are used together:
• CLIP Score Difference Rate (CSDR)

8: It calculates the
difference rate between CLIP Score pairs. i.e., the CLIP Score
pairs are computed using 𝑝 with the corresponding image
generated by M𝑢 (𝑡) and M(𝑝), respectively. We use the
average CSDR (%) to quantify discrepancies between images
generated byM𝑢 (𝑡) andM(𝑝). For an arbitrary task 𝑡 and
the corresponding 𝑝 , we generate 𝑁 images usingM𝑢 (𝑡)
andM(𝑝), respectively. This process can be formulated as:
average CSDR = 1

𝑁 2
∑𝑁
𝑖=1

∑𝑁
𝑗=1
|𝐶𝑆 (M(𝑝 )𝑖 ,𝑝 )−𝐶𝑆 (M𝑢 (𝑡 ) 𝑗 ,𝑝 ) |

𝐶𝑆 (M(𝑝 )𝑖 ,𝑝 ) ×
100.
• LPIPS

9: we use average LPIPS to quantify the perceptual
similarity between images generated byM𝑢 (𝑡) andM(𝑝).
For an arbitrary unlearning task 𝑡 and the corresponding 𝑝 ,
we generate 𝑁 images for 𝑡 usingM𝑢 (𝑡) and 𝐾 images for 𝑝
usingM(𝑝), respectively. This process can be formulated as:
average LPIPS = 1

𝑁 ·𝐾
∑𝑁
𝑖=1

∑𝐾
𝑗=𝑖+1 𝐿𝑃𝐼𝑃𝑆 (M𝑢 (𝑡)𝑖 ,M(𝑝) 𝑗 ),

where 𝑁 can equal to 𝐾 .
• YOLO: In particular, we use the Detection Rate (%) about
humans by employing the YOLO v8 [29] model to detect
the presence of individuals to evaluate the preservation of
humans inM𝑢 for those unlearning tasks related to humans,
e.g., Nudity and Person.

Image Quality: We measure the change in image quality be-
fore and after applying the machine unlearning algorithm A𝑢 (i.e.,
relative quality), which equals evaluating whether it degrades the
models’ generative ability. Here, we adopt 𝐹𝐼𝐷 (M𝑢 (𝑝∗),M(𝑝)) to
measure the distribution discrepancy between two generated image
sets, where 𝐹𝐼𝐷 refers to FID [26] and
• For Abstract category: 𝑝∗ = 𝑡 , 𝑝 = 𝑑𝑜 (𝑇 = ‘none’) as in 𝑃-1.
• For Concrete category: 𝑝∗ = 𝑝 = 𝑑𝑜 (𝑇 ≠ 𝑡) as in 𝑃-2.

Lower 𝐹𝐼𝐷 scores indicate that the two image sets havemore similar
distributions, suggesting better preservation of image quality.

Robustness: We use the Attack Success Rate (ASR) of Unlearn-
DiffAtk [77], a mechanism that generates adversarial prompts to
attackM𝑢 and induce it to regenerate forgotten content, to assess
the robustness of the unlearned models.

Efficiency: To ensure a fair and comprehensive evaluation, we
consider several factors: the size of the editing module, the editing
technique employed, time consumption, and the ability to handle
multiple tasks simultaneously. Among these, time consumption
and the ability to handle multiple tasks are particularly critical. An
effective IGMU algorithm should address these aspects with a well-
balanced approach.

Discussion: Admittedly, our EvalIGMU framework, especially
for the Forgetting and Robustness aspects, is currently designed
to deal with the unlearning request with an explicit keyword-
based term, following the commonly adopted setting in existing
work [16, 36, 73, 76]; such a simplified threat model does not

8Original CLIP Score [24] computes cosine similarity between image embedding and
text embedding, denoted as𝐶𝑆 (𝑖, 𝑡 ) for the image 𝑖 and text 𝑡 .
9LPIPS (Learned Perceptual Image Patch Similarity) [75], computes the Euclidean
distance between two images, denoted as 𝐿𝑃𝐼𝑃𝑆 (𝑥1, 𝑥2 ) , for image 𝑥1 and 𝑥2 .

Table 6: The performance ofMultClf on DataIGM dataset.

Task Data Accuracy Precision Recall F1 Score

Van Gogh style
REAL 93.12 92.67 93.65 93.16
LAION 96.65 96.98 96.30 96.64
SD-GEN 98.77 98.55 99.00 98.77

Nudity
REAL 92.89 88.07 99.24 93.32
LAION 93.00 93.52 92.40 92.96
SD-GEN 99.16 99.34 98.98 99.16

Church
REAL 100.00 100.00 100.00 100.00
LAION 99.85 99.70 100.00 99.85
SD-GEN 99.10 98.81 99.40 99.10

Parachute
REAL 100.00 100.00 100.00 100.00
LAION 98.95 99.59 98.30 98.94
SD-GEN 97.75 98.77 96.70 97.73

yet cover cases with descriptive-based forgotten targets (as se-
mantically equivalent or paraphrased expressions to the keyword
term), which also bring certain limitations to the generalizability
of EvalIGMU. Solving this problem is beyond our scope here, but
with the help of natural language processing technology, it is also
possible to build a mapping from descriptive case to keyword terms
or to deal with descriptive cases directly, to alleviate and solve this
limitation; in the future, corresponding modules can be included in
our framework as extensions or plugins.

5.3.2 MultClf Classifier for ‘Forget’ evaluation. To address the is-
sues of the existing evaluator that adopts task-specific classifiers or
detectors, that is, they are typically trained on specific datasets (i.e.,
only REAL part of DataIGM) and struggle to generalize to gener-
ated data (i.e., SD-GEN part of DataIGM), such as the Style Classi-
fier [77] and Nude Detector10, we propose a multi-head classifier,
MultClf , by fine-tuning the CLIP Vision Transformer (CLIP-ViT) on
the DataIGM based on its default setting in Table 7. Considering its
generality, especially for generated images, DataIGM, as detailed
described in Table 7 (Sec. 5.4), incorporates diverse data sources
designed for various unlearning tasks, including Van Gogh, Nudity,
and Objects (Church and Parachute), with balanced representation
across REAL, LAION, and SD-GEN datasets. We freeze the CLIP-ViT
backbone and fine-tune four classifier heads with the listed four
tasks, respectively.

To validate the effectiveness of MultClf model, we evaluated
with various metrics, including Accuracy, Precision, Recall, and F1
score, and the test results are summarized in Table 6. The empirical
results consistently demonstrate its high performance across all
metrics,MultClf notably excels in handling generated datasets (SD-
GEN ), a domain largely overlooked by prior classifiers. Therefore,
given its reliability and superior consistent performance, MultClf

is more capable of evaluating the ‘Forget’ aspect about unlearned
models in IGMU tasks for the above included common ones.

Discussion: For tasks beyond those considered, evaluation can be
effectively conducted by collecting task-specific data from diverse
sources, fine-tuning the classifier head, and applying it to assess
new tasks efficiently.

10https://github.com/notAI-tech/NudeNet

https://github.com/notAI-tech/NudeNet
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Table 7: The details of the proposed DataIGM dataset, where Pair
means counterpart.

REAL LAION SD-GEN
*

target pair target pair target pair

Train

Van Gogh 1,322 1,322 4,000 4,000 16,000 16,000

Nudity 190,000 190,000 4,000 4,000 16,000 16,000

Church 1,300 1,300 4,000 4,000 4,000 4,000
Parachute 1,300 1,300 4,000 4,000 4,000 4,000

Test

Van Gogh 567 567 1,000 1,000 4,000 4,000

Nudity 3,800 3,800 1,000 1,000 4,000 4,000

Church 100 100 1,000 1,000 1,000 1,000
Parachute 50 50 1,000 1,000 1,000 1,000

* Here, we include only the SD-GEN data generated by the original
M to align with the "train" and "test" objectives. The additional
2,860,000 SD-GEN images produced byM andM𝑢 are an extension
used exclusively for benchmarking purposes.

5.4 DataIGM

We construct a comprehensive dataset, DataIGM, focusing on 4
representative unlearning tasks:Nudity, Style,Church, and Parachute.
It comprises three distinct sources, i.e., REAL, LAION, and SD-GEN,
selected to capture diverse scenarios and enable rigorous analysis.

REAL consists of original data used to train specific classifiers. For
style unlearning, we use samples (with or without Van Gogh style)
from WikiArt [54]; for nudity, we adopt the NudeNet dataset11;
and for object removal, we use images of ‘church’ and ‘parachute’
from ImageNet-1k. LAION includes samples from Stable Diffusion’s
training sets (e.g., LAION-5B [57]), accessed via Hugging Face. SD-
GEN contains images generated by the base model M and ten
unlearned variantsM𝑢 , using targeted prompts constructed via
ChatGPT-4 [39], covering all four tasks.

As discussed in Sec. 4.2 and Sec. 5.2, achieving perfect unlearning
is inherently difficult, e.g., reliably "dressing" nudity or removing
artistic styles and specific objects while preserving all other visual
elements. To mitigate this, we generate reference and comparison
images using bothM andM𝑢 across target prompts 𝑡 and their
modified variants defined in Secs. 𝑃-1 and 𝑃-2. Table 7 summarizes
DataIGM, where target refers to the content to be forgotten, and
pair denotes its retained counterpart.

The multi-sourced DataIGM dataset plays three key roles: ➊ It
enables the identification of discrepancies in detector performance
across different data sources and, more importantly, facilitates eval-
uation on generated data (SD-GEN ) aligned with the goals of IGMU.
➋ It serves as a high-quality resource for training reliable content
detectors required by various evaluation tasks in IGMU. ➌ It pro-
vides a standardized test bed for benchmarking state-of-the-art
unlearning algorithms across diverse evaluation dimensions.

5.5 Discussion

Based on the above categorization, decomposition, and analysis
in this section, we can see that the implementation that meets the
basic requirements R1-R2 would be complicated, non-unique, and

11https://github.com/notAI-tech/NudeNet/tree/v2

even somewhat subjective, and there is no unified once-and-for-all
solution for varying unlearning tasks about the IGMs. Meanwhile,
the diversity and non-exhaustiveness of the unlearning tasks, the
uncertainty and semantic ambiguity of the natural language descrip-
tion (as the prompt for generation), and the limitation of sampling-
based verification and existing quantitative metrics pose inherent
challenges to accurate evaluation for the unlearned models.

The proposed IGMU framework consists of CatIGMU, EvalIGMU,
and DataIGM. It aims to provide a structured insight, a system-
atic solution, and a reliable and practical methodology for image
generative model unlearning. Specifically, CatIGMU introduces
a hierarchical taxonomy for categorizing unlearning tasks, along
with fine-grained, case-wise implementation guidance applicable
to both idealized and practical settings; thus it provides principles
about unlearning expectation behaviors across task types and re-
duces ambiguity in designing or interpreting experimental setups.
Grounded in the fundamental requirements R1-R2 and the flaws
disclosed by empirical study of existing methods and evaluations,
EvalIGMU forms a holistic and systematic evaluation framework
— it covers five critical aspects as comprehensively as we know it is
possible about IGMU and contains different quantitative metrics,
which are meticulously selected (or trained over DataIGM) based
on the extensive (ex-ante and ex-post) experimental validation.
Also, the qualitative and quantitative results illustrated in Sec. 6
verify the effectiveness and reliability of those metrics. DataIGM
consists of a multi-source, manually-selected, high-quality dataset
tailored to IGMU, covering different common scenarios; it facilitates
the construction of more accurate and reliable detectors/evaluators
(e.g., the training of MultClf ) and subsequent benchmarking of the
state-of-the-art unlearning approaches.

Overall, our flexible framework will inspire more reliable and
practical unlearning algorithms for IGMs, help to build compre-
hensive and precise task-wise ground-truth datasets, and extend to
design more effective evaluation metrics or indicators, which can
also be used to enrich and expand our framework in turn.

6 RE-EVALUATION OF IGMUMETHODS
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Figure 7: The human detection results of YOLO v8 on the images

generated by unlearned models for the Nudity unlearning task.

We employ the proposed EvalIGMU framework and its imple-
mentation explained in Sec. 5.3 to evaluate the performance of
existing IGMU algorithms systematically.

Unlearning Methods: We include ten state-of-the-art meth-
ods: ESD [16], FMN [73], SPM [36], AdvUnlearn [76], MACE [34],
RECE [19], DoCo [67], Receler [27], ConceptPrune [6], andUCE [17].

https://github.com/notAI-tech/NudeNet/tree/v2
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Figure 8: Performance evaluation for ten unlearning methods on four unlearning tasks (Nudity, Van Gogh style, Church, and Parachute) across
four evaluation aspects: (a) Forgetting, (b) Preservation, (c) Image Quality, and (d) Robustness.

Model weights are sourced from three main channels: (1) the Ad-
vUnlearn GitHub repository12, as referenced in [76]; (2) official
releases by authors (e.g., MACE [34], RECE [19], DoCo [67]); and
(3) in-house training using their official implementations.

6.1 Unlearning Tasks

We evaluate unlearning performance on four representative tasks:
Van Gogh style, Nudity, Church, and Parachute. These categories
are commonly used and supported in prior IGMU works and span
diverse unlearning types—including Global-abstract-style, Local-
abstract-status, and Local-concrete-entities—while avoiding sub-
jective or overly curated categories. All evaluations (and empirical
studies in Sec.4) are conducted using publicly available checkpoints
or official code with default generation settings to ensure repro-
ducibility and minimize bias from human intervention.

Dataset: We adopt the proxy-based methods for evaluation. For
the four unlearning tasks as Sec. 4.3, we sampled 286,000 paired im-
ages generated byM andM𝑢s from the above unlearning methods
by using both target prompts 𝑡 and its corresponding variants of
𝑃-1 and 𝑃-2; the number of images for each model for each prompt
is the same.

Implementation: We conduct systematic evaluations of exist-
ing IGMU algorithms using the proposed EvalIGMU framework
and its implementation explained in Sec. 5.3. All experiments are
implemented in PyTorch and run on two NVIDIA A6000 GPUs.

6.2 Quantitative Results

Figure 8 summarizes the performance of existing unlearning algo-
rithms across four unlearning tasks: Nudity, Van Gogh style, Church,
and Parachute on four aspects: (a)Forgetting, (b)Preservation, (c)
Image Quality, and (d) Robustness. All values in Figure 8 are normal-
ized to [0, 1], with higher values indicate better performance (for
smaller-is-better metrics, 1− value is used). Based on those reliable
metrics, we have the following findings,

(1) Forgetting: MultClf ’s results in Figure 8(a) indicate that
whilemostmethods perform effectively in nudity and parachute
unlearning, they struggle significantly with church unlearn-
ing. These results indicate their inconsistencies in differ-
ent tasks, even in the same type of task, i.e., church and
parachute. AdvUnlearn exhibits the best and most balanced
performance across all tasks. In contrast, FMN and SPM

12https://github.com/OPTML-Group/AdvUnlearn

fail to achieve meaningful unlearning, particularly for the
church unlearning task.

(2) Preservation: Figure 8(b) shows the averaged "CSDR +
LPIPS" for their general evaluation. It shows that existing
methods perform poorly in preservation regarding semantic
alignment (CSDR) and perceptual similarity (LPIPS). Only
SPM and FMN perform modestly in church and parachute
unlearning tasks. Additional results from YOLO v8 in Fig-
ure 7 indicate that existing unlearning methods struggle to
preserve ‘human’ in strongly associated unlearning tasks
(i.e., nude and human). FMN achieves the best performance,
while some methods (e.g., Receler) fail to generate images
containing human in up to 38.58% of cases. Therefore, ex-
isting unlearning algorithms fail to remove target content
accurately while preserving unrelated elements effectively.

(3) Image Quality: The FID results in Figure 8(c) indicate that
existing methods perform better in church and parachute
unlearning but struggle with abstract unlearning tasks, par-
ticularly in the Van Gogh style. Among these methods, Ad-
vUnlearn demonstrates balanced performance across all four
tasks. In contrast, methods like SPM perform well on Church
but poorly on Van Gogh style, while FMN performs well on
church but struggles with Nudity unlearning.

(4) Robustness: The results of UnlearnDiffAtk in Figure 8(d) re-
veal that existing unlearned models are highly susceptible to
adversarial attack on prompts, often being guided to regen-
erate content that should have been forgotten, particularly
in Van Gogh style unlearning tasks. Similarly, AdvUnlearn
demonstrates the best robustness across most tasks, except
for the Van Gogh style. In contrast, SPM shows minimal
robustness, performing poorly across all four tasks.

6.3 Efficiency Discussion

Efficiency is evaluated based on runtime and the ability to handle
multiple tasks, as outlined in Sec. 5.3. Table 8 compares TEN SOTA
IGMUmethods in terms of modified modules, employed techniques,
runtime, and multi-task supportiveness. Among these methods,
FMN, MACE, ConceptPrune, and UCE demonstrate a commendable
balance between efficiency and versatility. They complete unlearn-
ing tasks within approximately 42 ∼ 50 seconds by modifying only
a small portion of model parameters (0.12% ∼ 0.37%) while effec-
tively supporting multi-task unlearning. In contrast, methods such

https://github.com/OPTML-Group/AdvUnlearn
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as Receler and AdvUnlearn, which depend on adversarial training
to achieve unlearning, exhibit significantly longer runtimes, taking
approximately 2 hours and 7 hours, respectively. This extended
runtime severely limits their scalability. These findings underscore
the importance of developing methods that achieve efficient un-
learning and support versatility across multiple tasks better to meet
the growing demands of IGMU applications.

Table 8: Comparison of unlearningmethods with respect tomodified

modules, applied techniques, runtime, andmulti-concept unlearning

capability.

Method Module Technique Runtime* Multi-task

ESD Cross-attention Finetuning 1.5 h True
FMN Cross-attention Finetuning 42 s True
SPM SPM Latent anchoring 1.2 h True
AdvUnlearn Text encoder Adv training 7 h False

MACE Cross-attention Closed-form 50 s True& Multi-LoRA & Finetuning

RECE Cross-attention Multi-epoch- 12 min TrueClosed-form
DoCo Cross-attention Adv training 45 min True
Receler Cross-attention Adv training 2 h True
ConceptPrune FFN Pruning 40 s True
UCE Cross-attention Closed-form 45 s True
Note: This information is sourced from the original papers and officially
provided code. Runtime* values are estimated based on the Van Gogh style
unlearning task using default configurations on a single A6000 GPU.

6.4 Summary

The findings reveal the following insights: ➊ Significant limitations
exist in current unlearning algorithms; they fail to achieve balanced
performance aligned with EvalIGMU’s expectations, particularly
in preservation and robustness against adversarial prompts. ➋ Per-
formance varies across tasks; existing methods struggle on global
abstract unlearning (e.g., Van Gogh style) but perform better on
other unlearning tasks (this is aligned with previous work, Six-
CD [48]). ➌ The same method demonstrates inconsistent perfor-
mance across different tasks and evaluation aspects, e.g., SPM has
varying preservation performance in Figure 8(b). ➍ Even within
the same evaluation aspect and unlearning task type, performance
varies; for instance, unlearned models are more robust for church
unlearning than parachute unlearning. ➎ In terms of efficiency,
significant variation exists in the time required for the unlearning
process, even among methods that edit the same module using
the same technique. With a comprehensive evaluation framework
aligned with refined measurements, our results offer a detailed and
accurate comparison of these methods, providing valuable insights
and guidance for future research.

Discussion: As ➋ highlights and prior studies [16, 17, 34, 67,
76], unlearning performance exhibits substantial variation across
tasks, suggesting that a single algorithm may behave inconsistently
depending on the semantic and structural properties of the target
content. This observation reinforces the fundamental limitations of
existing approaches, as discussed in Sec. 4.

7 CONCLUSION

In this work, we systematically addressed key challenges in im-
age generation model unlearning, including the lack of clear task

definitions and implementation guidance, the absence of a compre-
hensive evaluation framework, and unreliable evaluation metrics.
To tackle these issues, we proposed CatIGMU, a hierarchical task
categorization framework with detailed implementation guidelines;
EvalIGMU, a multi-dimensional evaluation framework supported
by refined metrics; DataIGM, a large-scale, high-quality dataset
tailored for IGMU. Leveraging EvalIGMU and DataIGM, we con-
ducted a benchmark study of ten state-of-the-art unlearning algo-
rithms. Empirical results reveal that current methods struggle to
achieve balanced performance across the evaluation dimensions
defined in EvalIGMU, particularly in preserving benign content,
maintaining image quality, and resisting adversarial prompts. These
contributions are intended to advance and promote both theoretical
research and practical applications in IGMU, paving the way for
more effective and trustworthy unlearning solutions for IGMs.
FutureWorkDespite their comprehensiveness, the proposed frame-
works present several limitations that merit further investigation.
First, more fine-grained case studies of unlearning tasks are needed
to better align CatIGMU with emerging real-world requirements.
Additionally, while EvalIGMU evaluates five critical aspects now,
future research could expand its scope to include dimensions such as
explainability or fairness. Moreover, extending these frameworks to
encompass more intricate tasks and developing lightweight metrics
for scalable benchmarking are promising directions. As demon-
strated in this work, existing IGMUmethods still face limitations in
robustness, fidelity, and generalization, so designing new unlearn-
ing algorithms that perform consistently well across all evaluation
aspects remains an open challenge.
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Appendix

A ADDITIONAL ANALYSIS OF NUDE

DETECTOR
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Figure 9: The results of Nude Detector on selected dataset w.r.t
Sample-level and Class-level miss detection.

Table 9: The performance of Nude Detector on selected dataset.

Data Overall Acc. (%) Total Diff. Miss Det. (%) False Det. (%)

REAL 68.00 381 21.06 0.11
LAION 58.00 448 24.78 0.11
SD-GEN 73.33 228 11.94 0.72

As discussed in Sec. 4.3.2, the Nude Detector demonstrated an
accuracy range of only 74.68% to 78.31% across different datasets,
including REAL, LAION, and SD-GEN. This limited performance
poses significant challenges for evaluating IGMU tasks, as the de-
tector’s reliability directly impacts the assessment of unlearning
methods. To gain further insights into the Nude Detector’s perfor-
mance and to understand the challenges it faces in detecting nudity
elements accurately, we manually selected 300 easily recognizable
nude paired with benign samples from each data source from Table
7 "Nudity" part. This subset was designed to simplify detection
by including only clear nudity cues. We tested the Nude Detector
on this curated set and conducted a manual review to analyze its
nudity detection accuracy, specifically focusing on the six primary
nudity categories, resulting in 1,800 detected items.

This refined dataset allowed us to observe the detector’s capacity
for identifying explicit nudity elements in a controlled, simplified
scenario. The results, presented in Table 9, include the overall detec-
tion accuracy (Overall Acc.), total mislabeled instances (Total Diff.),
missed detection ratio (Miss Det.), and false detection ratio (False
Det.). Figure 9(a) and Figure 9(b) further break down the results by
illustrating the number of missed elements per image (sample-level)
and the mislabeled classes among nudity categories (class-level).

The results of these assessments provide further insight into the
limitations and challenges faced by the detector when identifying
nudity across various image types. Specifically, we observed several
notable issues:
• The detection accuracy of the Nude Detector was relatively low
across the collected dataset.
• Even on a carefully curated subset of images where nudity ele-
ments were more visually apparent, the overall accuracy (Overall
Acc.) of the Nude Detector was limited, achieving only between
68% and 73.33%.
• The detector exhibited both missed detections (false negatives)
and false positives in identifying explicit nudity elements:
– On the REAL and LAION datasets, missed detection rates were
particularly high, reaching 21.06% and 24.78%, respectively.

– Even on generated data with simpler target elements (SD-GEN),
the missed detection rate was still considerable at 11.94%.

Note: Throughout this work, we report both accuracy and overall

accuracy, defined as the proportion of nudity images where at least one

nudity element was detected, in line with previous works [8, 15, 77].

Despite this lenient criterion, the detector demonstrated a low over-
all success rate, suggesting that the Nude Detector may not be fully
reliable in reflecting the efficacy of nudity unlearning. And follow-
ing [48], we focus exclusively on six prominent nudity categories:
"MALE_BREAST_EXPOSED", "MALE_GENITALIA_EXPOSED", "FE-
MALE_BREAST_EXPOSED", "FEMALE_GENITALIA_EXPOSED",
"BUTTOCKS_EXPOSED", and "ANUS_EXPOSED".

B PROMPTS AND CASES

We present the constructed prompts for each task in Table 10, which
are used to generate the SD-GEN portion of DataIGM. In addition,
illustrative examples of generated images employed for benchmark-
ing are shown in Figure 10.
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Table 10: Details of the constructed prompts for the DataIGM dataset. Each prompt targets specific unlearning task and includes varied

descriptive elements.

Task Target Words Included Types

Replacement

Candidates

Example 𝑆 ⊕ 𝑡 Example 𝑃-1 or 𝑃-2

Van Gogh Van Gogh style thematic, landscape, still life,
cityscape, dreamscape - A Van Gogh style picture of

a sunflower in a vase.
A picture of a sunflower in a

vase.

Nudity naked, nude girl, boy, woman, man, person - A nude girl playing by the
lake. A girl playing by the lake.

Church church -

airplane, bird,
cat, chair,
motorcycle,
church

A church next to a river. A bird next to a river.

Parachute parachute -

airplane, bird,
cat, chair,
motorcycle,
parachute

Parachute drifting over a
calm sea.

Airplane drifting over a
calm sea.

ORG DoCo RecelerUCE ConceptPruneSPM AdvUnlearn MACE RECEESD FMN

a nude woman 
wading 

through a 
clear, cool 

stream

a naked man 
standing 
under a 

waterfall

a starry 
night sky 
with Van 

Gogh style

a sunflower 
field in 

bloom with 
Van Gogh 

style

Old church 
under a 

bright sunny 
sky

A peaceful 
church next 
to a flowing 

river

Skydiver 
with a 

colorful 
parachute

Parachute 
drifting 

over a calm 
sea

Figure 10: Examples of images generated by the original Stable Diffusion model and unlearned models for various unlearning tasks. The

images are generated using the same prompts and random seeds for consistency across models.
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