
1

Post-Deployment Fine-Tunable Semantic
Communication

Peiyuan Si, Graduate Student Member, IEEE, Renyang Liu, Graduate Student Member, IEEE, Liangxin Qian,
Graduate Student Member, IEEE, Jun Zhao, Member, IEEE, Kwok-Yan Lam, Senior Member, IEEE

Abstract—Semantic communication (SemCom) is an emerging
way that aims to improve communication efficiency based on
the semantics of content, which relies on the knowledge base
(KB) and is usually dedicated to specific tasks or datasets.
To improve the adaptability of SemCom systems on unknown
datasets, we propose a post-deployment Fine-Tunable Semantic
Communication (FTSC) system for image transmission. Towards
an adaptive and efficient SemCom system, our research consists
of the framework design of FTSC and its system optimization
study. Firstly, the generalizability study is conducted based on a
two-layer hierarchical vector quantized-variational autoencoder
(VQ-VAE-2). Unlike traditional SemCom that can work on
limited pretrained datasets, FTSC adapts to varied input data
post-deployment, enhancing practicality in diverse communica-
tion scenarios. This system incorporates two novel fine-tuning
methods: Decoder Fine-Tuning (DFT) and Latent Space-based
Decoder Fine-Tuning (LSDFT). DFT updates the decoder for
new images post-deployment without transmitting gradients,
while LSDFT eliminates the need for raw image transmission
during fine-tuning. Secondly, we study the system optimization
of the proposed FTSC framework to improve the efficiency of
communication resource allocation with the concern of recovery
quality, time delay, and energy cost in downlink transmissions.
Extensive experiments demonstrate the superiority of FTSC over
Joint Photographic Experts Group (JPEG) and Joint Source-
Channel Coding (JSCC) across various datasets and noise levels,
and both DFT and LSDFT significantly enhance image recovery
on unfamiliar datasets compared to pre-trained models.

Index Terms—Semantic communication, VQ-VAE-2, wireless
communication, fine-tuning, resource allocation.

I. INTRODUCTION

With the increasing application of Internet of Things (IoT)
devices and smart services, a blueprint for sixth-generation
(6G) wireless networks has been proposed [2]. Such a
blueprint aims to build a space-air-ground-sea integrated net-
work offering higher data rates and wider coverage. However,
the ambition of 6G faces challenges due to limited commu-
nication resources, exacerbated by the burgeoning number of
user devices and the growing data demands of future mobile
services, such as mobile virtual reality (VR) and augmented
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reality (AR) [3]–[7]. Source coding has been an efficient way
to address the scarcity of communication resources, which
compresses the data size during transmission and recovers it
at the receiver side. Recently, the applications of Artificial
Intelligence (AI) technologies in source coding have led to
the proposal of a new type of source coding method known as
semantic communication (SemCom) [8]–[10], which extracts
semantic information from raw data and achieves a higher
compression rate than traditional algorithms.

The basic framework of SemCom comprises an encoder,
a decoder, and a common knowledge base deployed at both
encoder and decoder [11]–[14]. This framework serves as the
foundation for SemCom systems across different data types.
In the context of text data, Xie et al. [15] conducted early
but significant explorations by designing a Transformer-based
model DeepSC to reduce the number of symbols required for
text transmission. Building upon DeepSC, a lite distributed
version, L-DeepSC, was proposed to accommodate IoT de-
vices with less computational capacity [16]. For speech data,
Weng et al. [17] developed DeepSC-S based on a squeeze-and-
excitation network (SENet), which is tailored to extract seman-
tic information from speech signals. Additionally, Han et al.
[18] proposed an end-to-end deep learning-based transceiver
to minimize semantic redundancy in speech signals. Regarding
image data, the joint source-channel coding (JSCC) technique
proposed by Bourtsoulatze et al. [19] integrated autoencoder-
based source coding with traditional channel coding and
achieved robust image compression and recovery under noisy
channels. Moreover, Hu et al. [20] introduced semantic noise
into the raw data and proposed a masked vector quantized-
variational autoencoder (VQ-VAE), which improved the ro-
bustness of the model against noise by masking part of the
input image and further reducing the size of transmitted data.

Existing SemCom systems have demonstrated efficacy in
reducing data size for transmission [21]–[26]. However, their
generalization capability remains a significant challenge. In
the case of image-based SemCom, most existing works rely
on training results derived from limited training datasets.
This approach poses a problem for real-world communication
systems, where the input often contains unknown data. As
a result, the performance of pretrained models may diminish
due to distribution shifts. Once the encoder and decoder are
deployed at the sender and receiver, respectively, updating the
model involves transmitting parameters. This process is not
only costly but also counter-intuitive to the fundamental goal
of SemCom. Furthermore, most autoencoder-based SemCom
models use the original image as the training label. However,
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in a SemCom system, only the latent space is transmitted,
rendering the original training label inaccessible to post-
deployment. This limitation further complicates the real-time
updating of the SemCom model.

To address the existing research gap in the generalization
capabilities of Semantic Communication (SemCom) systems
with efficient utilization of communication and computation
resources, this paper consists of the following two parts of
researches which together form a comprehensive investigation:
Part 1 about framework design, and Part 2 for rigorous system
optimization. In Part 1, we design a SemCom framework
which achieves high generalizability in the sense that it
can adapt to unknown datasets through fine-tuning after the
deployment of encoder and decoder. In Part 2, we conduct
performance optimization for the SemCom system proposed in
Part 1 by considering not just generalizability but also energy
consumption and delay. We elaborate Part 1 and Part 2 below.

In Part 1, we introduce the Fine-Tunable Semantic Commu-
nication (FTSC) framework based on VQ-VAE-2 for image
data [27], [28]. FTSC facilitates two distinct post-deployment
fine-tuning methodologies: Decoder Fine-Tuning (DFT) and
Latent Space-based Decoder Fine-Tuning (LSDFT). DFT im-
plements the traditional transfer learning in the context of
SemCom, where the encoder and decoder are deployed dis-
tributively. Throughout the DFT process, we freeze parameters
in the encoder and transmit a small proportion of original im-
ages as labels to update the decoder. DFT requires additional
data transmission of original data but avoids the transmission
overhead for gradients. LSDFT updates the decoder using the
received latent space via indirect inference methods. During
the training phase, the encoder and the codebook are frozen,
and a copy of the encoder is deployed at the receiver ad-
ditionally. The received latent space is processed through a
decoder and the frozen encoder to get its recovered version,
and the loss, which calculates the distance between these two
latent variables, is used to update the decoder on the receiver
side. In the ablation study of FTSC, extensive experiments are
conducted to reveal the relationship between compression rate
and recovery quality under different noise types and levels.

In Part 2, we formulate a mathematical optimization prob-
lem and sets the objective function as the system performance,
which incorporates generalizability studied in Part 1 as well
as the energy consumption and delay of the system. The
rationale is that in some practical SemCom systems, although
generalizability matters, the energy cost and latency may be
also important; for instance, delay-critical applications (e.g.,
those for extended reality [29]–[31]) require small latency,
and devices with limited battery may have stringent energy re-
quirements. In our optimization problem, we tune the decision
variables in order to improve the system performance as much
as possible under practical constraints. The designated decision
variables comprise compression rate, bandwidth, and power
allocation. The adopted constraints include sum bandwidth,
sum transmission power, available range of compression rate
and delay limitation. To deal with the non-convex optimization
problem, we utilize fractional programming and alternative
optimization to remove the coupling among variables and
transfer the original problem into a convex form. Simulation

results validate the superiority of the FTSC framework over
traditional JPEG and JSCC [19] across a variety of channel
conditions and datasets.

The contributions of this paper are as follows:

• As far as we know, we are the first to study the
post-deployment model updating problem in SemCom
with integrate study from framework design to rigorous
system optimization. To achieve this, we propose the
Fine-Tunable Semantic Communication (FTSC) system
in Part 1, which enables the update of the deployed Sem-
Com model and improve the generalization capability of
SemCom systems. To improve the efficiency of FTSC in
practical use cases, we study its performance optimization
with resource limitation in Part 2.

• To improve the generalizability of SemCom systems, we
propose two post-deployment fine-tuning methods under
the FTSC framework in Part 1, i.e., DFT and LSDFT,
with different training cost and recovery quality. With
available raw images through additional transmission,
DFT is adopted to update the decoder and embedding
space by the difference between the recovered image and
the original image. With stricter communication resource
limitations and unavailable raw images, we adopt LSDFT
to update the decoder based on the received latent space
and update the model via indirect inference methods.

• To improve the efficiency of FTSC in practical communi-
cation, we study the balance of computational costs and
communication resources in Part 2 to maximize the utility
in a typical downlink transmission case. To solve the non-
convex original problem, fractional programming and al-
ternative optimization are utilized to remove the coupling
among variables and transfer the original problem into a
convex optimization problem.

• Extensive empirical results on DFT and LSDFT over
various datasets and channel conditions verify the supe-
riority of the proposed methods compared to traditional
algorithms, e.g., JPEG and SemCom benchmark JSCC,
in terms of peak signal-to-noise ratio (PSNR), structural
similarity (SSIM), and classification accuracy. Further-
more, simulation results of the downlink transmission
optimization problem reveal the impact of resource limi-
tation and the important factors of recovery quality, time
delay, and energy cost in searching for the optimal model
configuration and resource allocation.

The rest of this paper is organized as follows. We review
the related works in Sec. II. Sec. III provides an overview
of the system model and preliminary experiment results on
VQ-VAE-2 to investigate the model configuration for semantic
communication. Towards a generalizable and efficient Sem-
Com system, our work is presented in two parts. Part 1 of
our research is elaborated in Sec. IV, which introduces the
proposed FTSC framework, and proposes DFT and LSDFT to
improve the adaptability over various datasets. Then, in Sec. V
dedicated to Part 2 of our study, a joint resource allocation
and model configuration optimization problem in a downlink
transmission use case is formulated and solved by fractional
programming-based methods. The simulation results of the
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optimization algorithm are presented in Sec. V-B. Finally,
Sec. VI concludes this work and discusses potential research
directions.

II. RELATED WORK

In this section, we provide a brief literature review of
semantic communication, VQ-VAE-2, and transfer learning
and introduce their development, features, and applications.

A. Semantic Communication
The field of semantic communication (SemCom) has its

roots in semiotic studies [32], and the initial developments
in SemCom trace back to the 1950s [33]. Empowered by the
development of AI technologies, SemCom has been propelled
to an emerging research topic in recent years. Despite being
in its nascent stage, SemCom research has diverse explo-
ration directions, e.g., semantic-oriented communication, goal-
oriented communication, and semantic-aware communication.
Semantic-oriented communication aims to capture the core
information in source data, and reduce the data size for
transmission by removing the irrelevant information [8], [34]–
[36]. Different from semantic-oriented communication, goal-
oriented communication focuses more on the result, which
is acknowledged by the communication participants and in-
fluences semantic information extraction. Xie et al. [37] de-
signed a goal-oriented semantic transceiver MU-DeepSC for
visual question answering (VQA) tasks, which outperforms the
benchmarks in multi-user SemCom. Semantic-aware commu-
nication refers to the SemCom that plays a role in the analysis
of agent behavior and the environment, facilitating better
collaboration and task achievement. Its essential difference
from the other two types of SemCom is that the other two
focus on the result of communication, while semantic-aware
communication emphasizes understanding and utilizing the
contextual and semantic meanings to enhance interactions and
decision-making. An example work for the above is [38],
which studied the SemCom problem in autonomous vehicle
networks where SemCom provides auxiliary information that
assists in the task cooperation. Zhang et al. [39] introduced
U-DeepSC, a unified semantic communication system, fea-
turing a uniquely designed multi-exit architecture designed
to accommodate the diverse layer requirements of various
tasks. In addition to the progress on SemCom models, the
communication resource and user allocation problem also
attracted research interests. Xia et al. [40] developed a novel
two-stage solution for optimizing user association and band-
width allocation in intelligent SemCom systems to enhance
throughput and efficiency. Zhang et al. [41] introduced a
deep reinforcement learning framework for optimizing image
transmission in SemCom networks, which significantly en-
hanced the efficiency and reduced transmission latency. The
neural-network-based semantic encoder/decoder in SemCom
leads to more computational cost. Towards the reduction of
computational energy cost, Yang et al. [42] focus on energy-
efficient SemCom based on rate splitting and designed an alter-
nating algorithm where the closed-form solutions for semantic
information extraction ratio and computation frequency are
obtained at each step.

B. VQ-VAE-2 and other VAE-based models

VQ-VAE-2 [27] is a variant of vector quantized-variational
autoencoder (VQ-VAE) [28] that introduces a two-tier hierar-
chical structure and significantly elevates its capability to gen-
erate high-fidelity images. By capturing intricate details across
multiple scales, VQ-VAE-2 surpasses the BigGAN-deep [43]
in terms of recovered images’ classification accuracy. VQ-VAE
has a wide application in various research fields, including
image inpainting, video generation, and speech coding [44]–
[47].

Besides the VQ-VAE, many other variants of the variational
autoencoder (VAE) have been developed and proposed. Con-
ditional VAE (CVAE) proposed by Sohn et al. [48] conditions
the generation process on additional information, e.g., labels or
other relevant data, and achieved intersection over union (IoU)
of 98.52% in object segmentation task on CUB database with
the noise level of 25%. β-VAE [49] introduces an adjustable
hyperparameter β to the original VAE loss function to balance
latent space disentanglement and reconstruction accuracy and
achieved a disentanglement metric score of 99.23% on the 2D
shapes dataset. Nouveau VAE (NVAE) proposed by Vahdat et
al. [50] adopted deep hierarchical VAE for image generation
using depth-wise separable convolutions and batch normaliza-
tion, and can produce high-quality images as large as 256×256
pixels. Among all the mentioned variants of VAE, VQ-VAE is
the most suitable model for SemCom because it compresses
the original data into a smaller latent space and outperforms
other models in recovery quality.

C. Transfer Learning

Transfer learning is a machine learning methodology that
aims to enhance the performance of models in target do-
mains by leveraging knowledge from related but different
source domains, and often leads to significant improvements
in learning efficiency and prediction accuracy [51]. Transfer
learning is typically classified into three categories based on
the availability of training labels and the relationship between
source and target tasks: Inductive, Unsupervised, and Trans-
ductive transfer learning [52], [53]. In the context of computer
vision, a common approach to implement transfer learning
involves freezing part of or the whole feature extractor, while
fine-tuning the fully connected layers [54]. This technique
leverages the common features learned by pretrained feature
extractors, either assisting with or being directly applied to
the target dataset. Guo et al. [55] proposed AdaFilter for deep
learning with both pretrained and fine-tuned filters, and im-
proved average classification accuracy on multiple datasets by
2.54% compared with traditional methods. Transfer learning is
also extensively applied in the context of VAE-based models
[56]–[59], which implies the feasibility of the proposed FTSC
framework in this paper.

III. SYSTEM MODEL

VQ-VAE-2 is an enhanced variant of VQ-VAE, which has
been proven to perform better in image recovery [27]. To the
best of our knowledge, this is the first work to implement
VQ-VAE-2 in SemCom. As an exploration of this topic, we
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Fig. 1: Framework of FTSC.

first propose the SemCom framework based on VQ-VAE-2 and
conduct preliminary experiments for feasibility investigation,
denoising testing, and ablation study.

A. VQ-VAE-2-based SemCom System

The proposed VQ-VAE-2-based SemCom system is shown
in Fig. 1. The deployment of this system follows the basic
structure of SemCom, including encoders at the sender, de-
coders at the receiver, and a common embedding space as
the knowledge base (KB). The sender is deployed with two
encoders: an encoder for the bottom layer (Encoder B) and
an encoder for the top layer (Encoder T). The input image x
with semantic noise is encoded into the feature map zebottom(x)
by the encoder B, and mapped into the bottom layer latent
space zbottom(x) by vector quantization (VQ). The bottom layer
feature map zebottom(x) is further encoded into the top layer
feature map zetop(x) by Encoder T, which generates the top
layer latent space ztop(x). The combined latent space is given
by Z = {ztop(x), zbottom(x)}. In this paper, we consider the
possible injection of semantic noise on original image x, which
can be injected by a malicious user who uploads the image
with noise to the dataset, which can cause misclassification
and degrade the image quality [20].

VQ is assisted by the embedding spaces for the top layer
(TopEb) and bottom layer (BotEb), respectively. To facilitate
VQ (take the top layer as an example), the feature map zetop(x)
is passed through a discretization bottleneck and generates the
mapping index with respect to the embedding space TopEb.
The discretization follows

q(ztop(x) = k|x) =

{
1, for k = argminj ∥zetop(x)− ejtop∥2,
0, otherwise, (1)

where q(ztop(x) = k|x) denotes the posterior categorical
probability, zetop(x) denotes the output of the top layer encoder
network, and ejtop denotes the element with index j in the
embedding space TopEb. After discretization, ztop(x) contains
the index information with respect to the embedding space.
The quantization method of the bottom layer is the same as

the top layer, and the difference is that the input is zebottom(x)
rather than x.

The combined latent space Z is transmitted through the
noisy physical channel. The received latent space is given by
Zr = {zrtop(x), z

r
bottom(x)}, where zrtop(x) and zrbottom(x) denote

the received latent space for the top layer and the bottom layer,
respectively. The feature map is recovered by mapping latent
space Z to the elements in TopEb, which is given by

zqtop(x) = e
zr

top(x)
top , zqbottom(x) = e

zr
bottom(x)

bottom . (2)

The image recovery is facilitated by two steps. (1) Forward-
ing the top layer feature map zqtop(x) through the decoder for
the top layer (Decoder T). (2) Forwarding both the output of
Decoder T and zqbottom(x) through the decoder for the bottom
layer (Decoder B) to obtain the recovered image. The loss
calculation is based on reconstruction mean squared error
(MSE) loss and quantization loss Lq , which are given by

L = MSE (x, y) + Lq, (3)

Lq=∥sg[zebottom(x)]−e
ztop(x)
bottom ∥22+β∥zebottom(x)−sg[ezbottom(x)

bottom ]∥22
+ ∥sg[zetop(x)]−e

ztop(x)
top ∥22+β∥zetop(x)−sg[eztop(x)

top ]∥22, (4)

where ‘sg’ and y denote the stop-gradient operator and re-
covered image, respectively. During forward computation, it
functions as an identity operator, while its partial derivatives
are set to zero. This design ensures that the operand acts upon
remains constant and is not updated during the optimization
process [28]. β is a hyperparameter set to 0.25 in our exper-
iments. The decoder optimizes the MSE term only, and the
encoder optimizes MSE and Lq , simultaneously.

B. Preliminary Investigation and Ablation Study

The experiment results presented in Table I explore the
feasibility and effectiveness of the VQ-VAE-2-based Seman-
tic Communication (SemCom) framework. This investigation
involved comprehensive experiments on eight open-source
datasets,1

examining their performance across various noise types and
levels. To assess the framework’s enhancement over traditional
methods, we compare it against two benchmark scenarios:
traditional image compression algorithm JPEG and SemCom
benchmark Joint Source-Channel Coding (JSCC) [19]. Our
approach includes denoising training for both VQ-VAE and
VQ-VAE-2. This process entailed introducing corresponding
noise either to the input data or latent space, while using
the original image as the training label. Evaluation metrics
include the peak signal-to-noise ratio (PSNR) and structural
similarity index measure (SSIM). The compression rate ρ is
set to 0.03. In the JPEG scenario, a low-density parity check
(LDPC) is utilized under noisy channels to reduce the bit error
rate (BER). For uniformity across different datasets, all input

1The datasets are accessible at FFHQ: https://github.com/NVlabs/
ffhq-dataset, ImageNet: https://www.image-net.org/, CIFAR-10 and
CIFAR-100: https://www.cs.toronto.edu/∼kriz/cifar.html, Pokemon: https:
//www.kaggle.com/datasets/vishalsubbiah/pokemon-images-and-types, Xray:
https://www.kaggle.com/datasets/tolgadincer/labeled-chest-xray-images/data,
CityScapes: https://www.cityscapes-dataset.com/, Naruto: https:
//www.kaggle.com/datasets/neetuk/naruto-face-dataset
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TABLE I: Preliminary test on different models, noise levels, and datasets. (Metric: PSNR/SSIM; ρ = 0.03).

Dataset FFHQ ImageNet CIFAR-100 Pokemon X-ray Cityscapes CIFAR-10 Naruto
Noise Level No Noise
VQ-VAE-2 30.20/0.88 28.50/0.86 36.05/0.91 35.50/0.95 34.56/0.93 31.01/0.91 35.15/0.92 33.22/0.96
VQ-VAE 28.14/0.87 25.05/0.71 31.00/0.91 30.50/0.90 34.15/0.91 29.56/0.89 30.81/0.87 31.71/0.91

JPEG 23.62/0.64 21.99/0.59 25.83/0.73 25.92/0.81 25.48/0.62 22.75/0.61 24.00/0.69 22.47/0.72
JSCC 24.01/0.66 22.32/0.65 25.90/0.74 26.84/0.85 26.20/0.86 24.30/0.76 24.50/0.72 23.90/0.68

Noise Level 20dB Channel Noise
VQ-VAE-2+Denoise 29.72/0.85 27.80/0.80 35.56/0.94 32.50/0.92 34.47/0.92 31.02/0.91 34.16/0.91 32.51/0.95
VQ-VAE+Denoise 28.92/0.84 24.91/0.77 30.58/0.92 27.73/0.88 34.30/0.90 29.50/0.89 28.20/0.86 31.52/0.91

JPEG+LDPC 21.77/0.57 20.68/0.52 23.99/0.68 25.92/0.81 25.48/0.61 22.75/0.61 24.00/0.69 22.47/0.72
JSCC+Denoise 23.61/0.64 21.52/0.64 25.02/0.72 26.62/0.82 26.18/0.85 24.01/0.75 24.16/0.68 23.53/0.67

Noise Level 20dB Semantic Noise
VQ-VAE-2+Denoise 29.82/0.85 27.29/0.79 35.50/0.95 32.68/0.91 34.28/0.91 30.89/0.92 32.12/0.95 32.61/0.95
VQ-VAE+Denoise 29.09/0.84 25.10/0.78 30.58/0.91 28.18/0.89 33.79/0.90 29.06/0.88 28.11/0.94 30.49/0.89

JPEG+LDPC 20.17/0.53 18.87/0.47 22.02/0.63 20.88/0.61 21.97/0.58 20.97/0.62 22.97/0.67 21.75/0.70
JSCC+Denoise 21.9/0.79 20.61/0.64 21.76/0.70 21.55/0.62 26.07/0.88 23.65/0.73 20.51/0.65 23.22/0.75

Noise Level 10dB Channel Noise
VQ-VAE-2+Denoise 29.30/0.80 27.30/0.73 34.34/0.87 30.05/0.90 34.31/0.91 29.52/0.87 32.06/0.88 32.22/0.91
VQ-VAE+Denoise 28.88/0.78 23.03/0.72 27.41/0.88 27.22/0.84 34.08/0.89 28.99/0.86 29.6/0.86 30.98/0.91

JPEG+LDPC 21.75/0.56 20.66/0.52 23.97/0.68 25.88/0.81 25.46/0.61 22.71/0.61 23.98/0.69 22.46/0.71
JSCC+Denoise 21.98/0.60 21.90/0.65 24.11/0.73 26.23/0.52 26.17/0.80 23.89/0.74 22.95/0.65 23.39/0.66

Noise Level 10dB Semantic Noise
VQ-VAE-2+Denoise 29.53/0.80 25.94/0.77 35.41/0.88 31.23/0.90 34.29/0.91 30.42/0.89 31.51/0.89 32.46/0.91
VQ-VAE+Denoise 27.59/0.77 23.32/0.72 27.61/0.85 27.19/0.84 33.28/0.88 29.18/0.85 29.57/0.86 30.94/0.89

JPEG+LDPC 15.66/0.42 15.12/0.35 17.68/0.55 17.96/0.56 18.15/0.54 17.97/0.51 18.89/0.58 16.50/0.53
JSCC+Denoise 19.47/0.72 18.32/0.58 19.34/0.64 19.16/0.56 23.18/0.80 21.02/0.66 18.23/0.59 20.64/0.68

Noise Level 0dB Channel Noise
VQ-VAE-2+Denoise 25.02/0.71 21.91/0.58 29.92/0.92 24.33/0.77 28.77/0.81 24.74/0.71 29.35/0.91 25.32/0.80
VQ-VAE+Denoise 25.31/0.73 21.77/0.57 30.15/0.93 24.73/0.76 28.78/0.80 24.94/0.71 28.64/0.89 27.15/0.85

JPEG+LDPC 10.36/0.05 10.29/0.04 11.46/0.18 6.38/0.03 12.24/0.16 10.66/0.13 11.86/0.18 10.46/0.16
JSCC+Denoise 19.79/0.74 19.16/0.58 20.37/0.66 19.87/0.50 25.59/0.87 23.22/0.69 19.64/0.63 18.89/0.54

images are resized to 256×256 pixels, enabling their testing
on a consistent model. The channel model considered in FTSC
framwork is Additive White Gaussian Noise (AWGN) channel.
The transfer function is given by ηn(z) = z +N0, where the
vector N0 ∈ Ck consists of independent identically distributed
(i.i.d.) samples from a circularly symmetric complex Gaussian
distribution N0 ∼ CN (0, σ2Ik), where σ2 denotes the average
noise power.

As shown in Table. I, the VQ-VAE-2 and VQ-VAE-based
Semantic Communication (SemCom) framework demonstrate
a substantial advantage over the traditional JPEG compression
algorithm and JSCC across a variety of datasets. VQ-VAE-2
achieves slightly higher PSNR and SSIM than VQ-VAE owing
to its two-tier design, which better handles image details [27].
With increasing noise levels, both VQ-VAE-2 and VQ-VAE
exhibited only a minor degradation in performance. JPEG
has good resilience against channel noise, but is vulnerable
to semantic noise due to the lack of denoising on source
data. Although JSCC is inferior to VQ-VAE-2 and VQ-VAE,
it displayed resilience against both channel and semantic
noise. This similarity is attributed to the autoencoder net-
work structure within its framework, which enables denoising
training. In the experiment under 0dB SNR (channel noise),
the performance of JPEG+LDPC drops drastically due to the
rise of the bit error rate while the machine-SemCom-based

methods including JSCC and VQ-VAE, are less affected. We
also find that with low signal-to-noise-ratio (SNR), VQ-VAE-
2 loses its advantage over VQ-VAE. The result shows that
VQ-VAE-2 still beats VQ-VAE on ImageNet and CIFAR-10,
but has slightly lower performance on other tested datasets.
A possible reason is that the error caused by channel noise
on the top layer latent space has more effect on recovery,
and further investigation is needed on this issue. To focus
on the fine-tuning research in this paper, our further exper-
iments are conducted under SNR higher than 10dB, where
the experiment results in Table. I verify the feasibility of the
proposed VQ-VAE-2-based SemCom framework and indicate
the potentiality of enhancing image recovery quality.

To reveal the relationship between compression rate ρ
and image recovery quality, we tested VQ-VAE-2 and two
benchmark scenarios on the FFHQ dataset with different ρ,
which is shown in Fig. 2. The reciprocal of ρ, data reduction
ratio 1/ρ, is plotted on the x-axis for better visualization, and
the red dotted line denotes the unavailable data reduction rate.
The curves are fitted based on the real data points, which
are presented as corresponding dots. Our analysis revealed
that VQ-VAE-2 can achieve the highest data reduction ratio
(exceeding 600), and the JPEG algorithm struggles to reach
a reduction rate of 100 on the FFHQ dataset even if the
quality parameter is set to its lowest value. Among all the three
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Fig. 2: Reduction rate of data size versus PSNR with different
models and channel noise on the FFHQ dataset.

scenarios, VQ-VAE-2 has a close PSNR to JPEG at a low data
reduction rate, but the PSNR of JPEG degrades dramatically
as the data reduction ratio increases while VQ-VAE-2’s PSNR
decreases slower.
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Fig. 3: The impact of scaling settings of the bottom layer and
top layer on PSNR. Dataset: FFHQ without noise.

The two-tier architecture of VQ-VAE-2 allows for control of
the compression rate ρ through the scaling rates of both layers.
To investigate the influence of scaling rates on PSNR, we test
the VQ-VAE-2 model on FFHQ without noise. The scaling
rates for each layer are varied within the range of [2, 16], as
depicted in Fig. 3. Our findings highlight that the PSNR is
predominantly influenced by the scaling rate of the bottom
layer. For instance, when the scaling rate of the bottom layer
is increased from 2 to 16 while maintaining the top layer’s
scaling rate at 2, the PSNR decreases from 35.59 to 22.70.
Conversely, if we fix the bottom layer’s scaling rate at 2 and
increase the top layer’s scaling rate from 2 to 16, the reduction
in PSNR is relatively modest, amounting to only 1.0 (from
22.70 to 21.70). This phenomenon can be attributed to the
encoding process in VQ-VAE-2, where the input image first
passes through the bottom layer, and the encoding of the top
layer is based on the output of the bottom layer. The data in

Fig. 3 also follows the trend that a higher compression rate
results in lower recovery quality, suggesting that there is a
trade-off between these two factors.

IV. PART 1: FINE-TUNABLE SEMANTIC COMMUNICATION
(FTSC)

TABLE II: Performance test on different models and datasets
(Metric: PSNR/SSIM; ρ = 0.03; pretrained: evaluation of
model pretrained on hybrid dataset formed by the pretraining
group; Basic: training only on the target dataset).

Training Method DFT pretrained Basic
Noise Level No Noise

X-ray 38.49/0.95 35.33/0.94 34.56/0.93
Cityscapes 31.98/0.94 31.20/0.92 31.01/0.91
CIFAR-10 42.90/0.99 42.10/0.98 35.15/0.92

Naruto 38.5/0.97 35.59/0.96 33.22/0.96
FFHQ 33.7/0.94 33.57/0.93 30.20/0.88

ImageNet 27.14/0.85 27.03/0.85 28.50/0.86
Noise Level 20dB Channel Noise

X-ray 37.36/0.93 34.91/0.94 34.47/0.92
Cityscapes 31.50/0.92 31.30/0.90 31.02/0.91
CIFAR-10 42.45/0.99 41.43/0.98 34.16/0.91

Naruto 37.40/0.96 35.38/0.95 32.51/0.95
FFHQ 33.50/0.94 33.23/0.93 29.72/0.85

ImageNet 27.06/0.85 26.90/0.84 27.80/0.80
Noise Level 10dB Channel Noise

X-ray 36.52/0.90 34.61/0.92 34.31/0.91
Cityscapes 31.10/0.90 30.86/0.89 29.52/0.87
CIFAR-10 42.35/0.99 40.77/0.98 32.06/0.88

Naruto 36.10/0.95 34.86/0.95 32.22/0.91
FFHQ 32.67/0.90 32.61/0.91 29.30/0.80

ImageNet 26.49/0.81 26.44/0.82 27.30/0.73

In the previous section, we verified the feasibility of the
VQ-VAE-2-based SemCom system. Typically, in a conven-
tional SemCom system, such a pretrained model is considered
ready for deployment, i.e., deploying the encoder and the
decoder at the sender and receiver ends, respectively. How-
ever, the pretrained model may face challenges from out-of-
distribution data, such as images that are significantly differ
from those in the training dataset. A potential solution is
to apply transfer learning to the pretrained model, but this
approach often incurs additional communication overhead due
to the transmission of gradients and raw images. To circumvent
this issue and facilitate transfer learning at a lower com-
munication cost, we will introduce a novel transfer learning
framework to establish the Fine-Tunable Semantic Commu-
nication (FTSC) system in this section, and conduct further
study on its implementation in next section. The proposed
FTSC framework consists of two distinct approaches: Decoder
Fine-Tuning (DFT) and Latent Space-based Decoder Fine-
Tuning (LSDFT), which will be introduced in the subsequent
subsections.
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Fig. 4: Decoder fine-tuning (DFT) framework.

A. Decoder Fine-Tuning (DFT)

As shown in Fig. 4, the decoder fine-tuning model consists
of frozen encoders, tunable embedding spaces deployed at
both the sender and the receiver, and the decoders deployed
at receiver only. To achieve high-quality semantic image
transmission with unknown datasets, the SemCom process is
divided into two phases: (1) the fine-tuning phase and (2)
the transmission phase. At the beginning of transmission, the
encoder and decoder networks at both sides are loaded with
pre-trained parameters. The tunable embedding spaces at both
sides are reset to default Ed, which is the same as in the
pretrained model. During the fine-tuning phase, the embedding
space at the sender is updated by the quantization loss, given
by

Lq=∥sg[zebottom(x)]−e
ztop(x)
bottom ∥22+β∥zebottom(x)−sg[ezbottom(x)

bottom ]∥22
+ ∥sg[zetop(x)]−e

ztop(x)
top ∥22+β∥zetop(x)−sg[eztop(x)

top ]∥22. (5)

The original image and the latent space produced at the sender
end are transmitted through the physical channel. Upon receipt
of this data, the receiver utilizes the decoders to reconstruct
the image, and updates the decoder networks based on the
loss calculated from the reconstructed and the original images,
which is given by

L = MSE (x, y) + Lq, (6)

where the embedding space at the receiver is updated by
the quantization loss Lq calculated with the assistance of the
frozen encoders and the received image by the same method
as in (5). As the input image, frozen encoder, and the initial
value of embedding spaces are the same, the consistency of
embedding space at both sender and receiver can be ensured.

With the same Lq calculated at both sides, the embedding
spaces with the same initial value are updated and synchro-
nized during the fine-tuning process. Once the fine-tuning
process reaches convergence, indicating that the SemCom
system has adequately adapted to the new dataset, the system
transitions from the fine-tuning phase to the transmission
phase. This approach ensures that the system remains versatile
and effective, even when dealing with previously unseen
data. The DFT framework avoids the communication cost
of gradient transmission and embedding space initialization
during the fine-tuning process. The additional communication
cost for fine-tuning is mainly caused by the transmission of
the original image because the data size of Lq is negligible.

To simulate the performance of DFT, we split the eight
tested datasets into the pretraining group (FFHQ, ImageNet,
CIFAR-100, and Pokemon) and the testing group (X-ray,

Cityscapes, CIFAR-10, and Naruto). The training set for the
fine-tuning phase is sampled from the target dataset with
ratio less than 5%. The VQ-VAE-2 model is pretrained on
a combined dataset of the pretraining group, and then applied
to the testing group with DFT. The simulation results are
presented in Table. II, where ‘DFT’ denotes the proposed
method, ‘pretrained’ denotes directly applying the pretrained
model on a combined dataset formed by the pretraining
group to unknown datasets, and ‘Basic’ denotes training the
VQ-VAE-2 model only on the target dataset.

Based on the simulation results, it is evident that the pro-
posed DFT scenario enhances the PSNR across various testing
datasets under different channel noise conditions, outperform-
ing both the pretrained model and the basic training scenario.
The pretrained model in the pretraining group achieves higher
PSNR compared to the basic training in the testing group
because the additional training data out of the target dataset
plays the role of data augmentation. We also tested two
datasets in pretraining group, FFHQ and ImageNet. Results
on FFHQ align with the phenomenon on testing groups, but
the ImageNet shows different results. Although DFT improves
the PSNR, the pretrained model achieves lower PSNR than
the basic training. A possible cause is that FFHQ is a highly
dedicated dataset on human faces, while ImageNet covers a
wide variety of images. For FFHQ, training together with other
datasets, such as ImageNet, functions as data augmentation.
However, the training on ImageNet with other dedicated
datasets introduces interference into the original distribution.
Another observation from Table. II is that the maximum PSNR
does not always appear together with the maximum SSIM. A
possible reason is that our loss is calculated based on mean
squared error (MSE), which directly relates to PSNR rather
than SSIM. Thus, we consider PSNR as the main metric, and
SSIM is considered as an auxiliary metric.

B. Latent Space-based Decoder Fine-tuning (LSDFT)
The DFT scenario allows for fine-tuning without gradient

transmission, but it still requires additional transmission of
original images. To further reduce the communication cost, we
propose the latent space-based decoder fine-tuning (LSDFT)
to enable fine-tuning without original image transmission.
There are two differences between LSDFT and DFT: (i) DFT
calculates loss based on raw data, but LSDFT calculates loss
based on an intermediate way. (ii) The communication cost
reduction ratio of LSDFT in fine-tuning phase can be the same
as the compression ratio. To deal with both ideal channel and
noisy channels, we propose the following two distinct LSDFT
designs.

1) Design for Ideal Channel: The system model of LSDFT
under an ideal channel, i.e., the channel without noise, is
shown in Fig. 5 (a). At the sender end, the quantization loss
Lq is calculated in addition to the latent space Z, and both
Lq and Z are transmitted to the receiver. In this scenario, we
assume that a frozen encoder and a fine-tunable decoder are
deployed at the receiver end. The decoder generates output y
from the received latent space Z. Different from traditional
transfer learning that requires original image x as the label,
the recovery loss of the decoder is inferred by
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Fig. 5: System models of LSDFT under idea channel and noisy channel.

L = MSE (zqbottom(x), z
e
bottom(y)) . (7)

With a well-trained embedding space, the retrieved feature
map zqbottom(x) is expected to closely approximate zebottom(x).
As the original image x and decoder output y pass through the
same encoder network to generate zebottom(x) and zebottom(y),
respectively, reducing the difference between x and y is
positively correlated to minimizing the inferred loss L. Note
that the reduced communication cost of LSDFT is at the cost
of inaccurate loss calculation due to the non-zero quantization
loss in practical implementation, which results in pixel-level
deviant in the recovered images, as shown in Fig. 6. Compared
to the quality degradation of JPEG, LSDFT controls the
deviance of pixel blocks on a smaller scale.

Raw DFT LSDFT JPEG

Fig. 6: Recovery detail comparison on FFHQ.

2) Design for Noisy Channel: The errorless transmission
of the latent space, which functions as the label during the
fine-tuning process, is critical for LSDFT. To improve the
robustness against channel noise, we propose a denoising
model-based system model for the case with corrupted latent
space, which is shown in Fig. 5 (b).

With the assumption of detectable channel noise, we deploy
pretrained DnCNN [60] networks at the receiver end to recover
clean latent space before fine-tuning. Due to the impact of
channel noise, the received latent is given by zr = z+ñ, where
ñ denotes the channel noise. The retrieved feature map zr,q(x)
is divided into the top layer and the bottom layer, which
are denoised by two different pretrained DnCNN networks
to obtain zr,dbottom(x) and zr,dtop (x), respectively. The fine-tuning
process takes the denoised latent space as the label, and the
quantization loss is assumed to be correctly transmitted.

TABLE III: Performance comparison of receiver side fine
tuning and benchmark methods(Metric: PSNR; ρ = 0.03;
LSDFT: the proposed latent space-based decoder fine-tuning;
PT: applying pretrained model on tested datasets).

Model LSDFT DFT PT JPEG JSCC
Data Type PSNR ∆ PSNR

Noise Level No Noise
X-ray 35.89 -2.60 +1.33 +10.41 +9.69

Cityscapes 31.23 -0.75 +0.22 +8.48 +6.93
CIFAR-10 37.15 -5.75 +2.00 +13.15 +12.65

Naruto 35.67 -2.83 +2.45 +13.20 +11.77
FFHQ 29.66 -4.04 -0.54 +6.04 +5.65

ImageNet 24.93 -2.21 -3.57 +2.94 +2.61
Noise Level 20dB Channel Noise

X-ray 34.33 -3.03 -0.14 +8.85 +8.15
Cityscapes 29.30 -2.20 -1.72 +6.55 +5.29
CIFAR-10 36.19 -6.26 +2.03 +12.19 +12.03

Naruto 33.58 -3.82 +1.07 +11.11 +10.05
FFHQ 29.46 -4.04 -0.26 +7.69 +5.85

ImageNet 23.96 -3.10 -3.74 +3.28 +2.44
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3) Simulation on LSDFT: To assess the efficacy of the
proposed LSDFT framework, we test the PSNR of the re-
covered images on multiple datasets under noisy and ideal
channel assumptions. The outcomes are detailed in Table.
III, where PT denotes directly applying the model pretrained
on the pretraining group (FFHQ, ImageNet, CIFAR-100, and
Pokemon) to the tested datasets.

Our analysis reveals that the performance of LSDFT is
intermediate between DFT and PT on the testing group (X-ray,
Cityscapes, CIFAR-10, and Naruto) under the assumption of
errorless latent space transmission, i.e., ideal channel without
noise. These findings suggest that LSDFT is a viable option
for fine-tuning pretrained models without the transmission
of original images. However, it is important to note that
as a trade-off for reduced data size during the fine-tuning
phase, LSDFT’s PSNR is lower than that of DFT. This is
attributed to the accumulated error on zr,q(x), which is caused
by the non-zero quantization loss. Within the scope of the
pretrained datasets (FFHQ and ImageNet), LSDFT does not
demonstrate additional performance enhancements. Therefore,
the choice of fine-tuning approach should be contingent upon
the data source. In scenarios involving a noisy channel, LSDFT
shows an improvement in PSNR over the pretrained model
on datasets like CIFAR-10 and Naruto, but experiences per-
formance degradation on X-ray and Cityscape datasets. This
pattern suggests that LSDFT is vulnerable to noise even if
a denoising technique is adopted. The noise on latent space
affects not only the recovery quality but also impacts the
loss calculation. In a broader context, both LSDFT and DFT
exhibit superior performance compared to JPEG and JSCC on
unknown datasets and enable post-deployment fine-tuning for
SemCom systems.
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Fig. 7: Top-1 Accuracy test.

To verify the performance of LSDFT in image classification
tasks, we tested the degradation of top-1 classification accu-
racy compared to the original data on CIFAR-10, CIFAR-100,
and ImageNet, as shown in Fig. 7. With the compression rate
of 0.03, JPEG and JSCC show obvious accuracy drops on all
three datasets, while DFT and LSDFT maintain performance
close to those of the original images on CIFAR-10 and CIFAR-
100. It is important to note that the proposed LSDFT and DFT
frameworks do experience a recognizable decrease in accuracy
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Fig. 8: Channel noise versus PSNR with different models and
datasets.

on the ImageNet dataset. This reduction can be attributed to
the vast number of classes in ImageNet, which renders the
model more sensitive to even minor alterations in the image.

The performance of the proposed LSDFT, DFT, and two
benchmark scenarios under varying levels of channel noise
is depicted in Fig. 8. As channel noise decreases, all four
scenarios exhibit an increase in PSNR for both FFHQ and
ImageNet datasets, suggesting that while the impact of noise
on image recovery quality can be mitigated, it cannot be
eliminated. The DFT scenario is regarded as the theoretical
upper limit for LSDFT performance because its training labels
are the original images. The results from the simulations show
that DFT consistently surpasses LSDFT and other benchmark
scenarios in all test cases. Although LSDFT does not reach
the same PSNR as DFT, it still outperforms both JSCC and
JPEG combined with LDPC, confirming its superiority over
traditional SemCom scenarios. Additionally, it’s observed that
all tested scenarios demonstrate varied performance across
different datasets, indicating that the actual effectiveness of
a SemCom system is likely influenced by the characteristics
of the data.

The image recovery test cases of the proposed DFT and
LSDFT on FFHQ, CIFAR-10, and X-ray datasets are presented
in Fig. 10. We can find that the image recovered by DFT is
very close to the raw image. The recovered image by JPEG has
obvious compression artifacts due to the small compression
rate 0.03. The recovery quality of LSDFT is lower than DFT
but higher than JPEG.

The convergence analysis of DFT and LSDFT are presented
in Fig. 11. The experiments are conducted on Xray dataset
and CIFAR-10, where a batch of 64 images are fed into
the network during each iteration. We can find that both
proposed algorithms converge within 600 iterations, with a
small fluctuation of PSNR value caused by the difference
among batches. To reduce the communication cost during the
fine-tuning phase, we sample 5% of images from the aimed
dataset as training sets, and the transmitted image or latent
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space can be reused during fine-tuning. The computational
complexity analysis can be found in Section V.

To summarize the FTSC framework with the design of DFT
and LSDFT, DFT facilitates fine-tuning in Semantic Commu-
nication (SemCom) without the need for gradient transmis-
sion, and LSDFT further reduces additional data transmission
through the implementation of intermediate loss calculation.
However, this conservation of communication resources comes
at the expense of decreased recovery quality and a less robust
training process. A similar trade-off is also evident in the re-
lationship between the compression rate and recovery quality,
where a lower compression rate typically results in diminished
recovery quality, as previously presented in Fig. 2. Therefore,
it is crucial to understand when and how to effectively utilize
SemCom systems such as FTSC with given constraints of
computation and communication resources, which will be
discussed in the next section.

V. PART 2: PERFORMANCE OPTIMIZATION FOR THE
SEMCOM SYSTEM PROPOSED IN PART 1

The FTSC framework proposed in the Part 1 focuses on
the generalizability of SemCom systems, but its effective-
ness is based on the assumption of adequate computing
resources. This limitation exists not only in FTSC but also
other autoencoder-based SemCom systems due to the compu-
tation overhead of the encoder and decoder network. In some
practical communication applications, there may be practical
resource limitations which constraints the utilization of Sem-
Com. To find the balance between additional computational
cost and recovery quality of SemCom systems such as the
proposed FTSC in practical communication tasks, this section
studies the joint scaling rate and communication resource
allocation optimization problem in a typical downlink image
SemCom task with a single sender and N receivers, as shown
in Fig. 9. The receiver set is denoted by N := {1, 2, . . . , N}.
To accommodate extremely limited communication resources,
we specify the SemCom scenario as LSDFT with fine-tuned
encoder and decoders. To investigate its application, we study
a joint resource allocation and model configuration problem
in the following subsections.

A. Problem Formulation and Solution

A closed-form relationship between PSNR and ρ on the
FFHQ dataset can be simulated through experimental data

......

...

Sender

Noisy 

Channel

Receivers

Receiver 1

Receiver N

Encoder

Embedding 

Space

......

Decoder

......

Decoder

Fig. 9: Downlink image transmission task with single sender
and multiple receivers.

points, which is given by

Qn = aqn + bqn ln (ρn) , (8)

where Qn denotes the PSNR of the n-th receiver, aq and bq are
fitted parameters. The fitting is based on the “fit(·)” function
in Matlab, with fit type a+b lnx. For the case without channel
noise, aq = 41.22 and bq = 3.035 (Root Mean Square Error
(RMSE) = 0.4959, R-square = 0.9904). For the case with 20dB
channel noise, aq = 41.03, bq = 3.073 (RMSE = 0.4582, R-
square = 0.9920). The input data size D0 is given by

D0 = 3×H ×W, (9)

where H and W denote the height and width of the image,
respectively. The number of channels is given by 3 because
the datasets contain RGB images. The compression rate ρ is
calculated according to the scaling rate in each layer, e.g., with
512 entries in the embedding space, applying scaling rate [4,2]
to a 256×256 RGB image results in a bottom layer latent space
with shape 64 × 64 and a top layer latent space with shape
32× 32. In this case, the compression rate is given by

ρ[4,2] =
64× 64 + 32× 32

256× 256× 3
× 9bits

8bits
≈ 0.03, (10)

where the ratio of bits term is based on the required bits to
save each pixel value. For an RGB image, the pixel value in
each channel varies from 0 to 255, which requires 8 bits of
storage. For the latent space, the information in each pixel is
represented by an index within [1, 512], which requires 9 bits
storage.

The computational complexity can be approximated by
the complexity of convolution layers, which takes the major
part of the calculation. The computational complexity of a
general convolution layer is given by O(M2k2CinCout), where
k2 denotes the kernel size, M2 denotes the size of output
feature map, Cin denotes the number of input channels, and
Cout denotes the number of output channels. In the case
of VQ-VAE-2 with scaling rate [2, 2], the convolution layer
complexity of the encoder/decoder is given by

C[2,2] = C0 − C∆ +
1

4
C0, (11)

where C0 and C∆ are given by

C0 =
1

4
HWk2Cch

2,

C∆ =
1

4
HWk2Cch(Cch − 3), (12)

where Cch denotes the number of filters. With the increase of
scaling rate at the bottom layer, the computational complexity
follows a geometric sequence, and the closed-form relationship
between compression rate and scaling rate s of the bottom
layer is given by

C = −C∆ +
4C0(1− 0.25log2(s)+1)

3
, (13)

where the scaling rate of the top layer is fixed as 2. The
compression rate of n-th receiver with respect to s is given by

ρn = 16ρ[2,2] × 0.25log2(s)+1. (14)
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Fig. 10: Image recovery test cases of the proposed DFT and LSDFT on FFHQ, CIFAR-10, and X-ray datasets.
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Fig. 11: Convergence analysis of the proposed algorithms

Substituting (14) into (13), the computational complexity
can be written as

C = −C∆ +
4

3
C0

(
1− ρn

ρ0

)
, (15)

where ρ0 = 16ρ[2,2]. The required time for latent space

transmission is given by

T trans
n =

ρnD0

bnlog2

(
1 + pngn

bnσ2

) , (16)

where bn denotes the allocated bandwidth for receiver n, σ2

denotes the noise power spectral density, and gn denotes the
channel power gain of the n-th receiver. The required time for
computation is approximated by

T comp
n =

−C∆ + 4
3C0

(
1− ρn

ρ0

)
f

, (17)

where f denotes the GPU frequency. Thus, the time delay of
n-th receiver is given by

Tn = T trans
n + T comp

n . (18)

The energy cost is calculated by

Etotal = Et + Ec, (19)

where Et denotes the sum energy cost for data transmission,
and Ec denotes the sum energy cost for computation, which
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are given by

Et =
∑
n∈N

pnρnD0

bnlog2

(
1 + pngn

bnσ2

) , (20)

Ec =
∑
n∈N

ωcf
2

(
−C∆ +

4

3
C0

(
1− ρn

ρ0

))
, (21)

where ωc denotes the computational efficiency of GPU. Data
rate rn is given by

rn = bnlog2

(
1 +

pngn
bnσ2

)
, (22)

where
gn = β0d

−α
n

∥∥∥∥∥
√

K

K + 1
ĝn +

√
1

K + 1
g̃n

∥∥∥∥∥
2

, (23)

where β0 denotes the channel gain at the reference distance
d0 = 1m, α denotes the path loss exponent (in this paper
we assume that α = 2). gn denotes the deterministic LoS
channel component with |ĝn| = 1, and g̃n denotes the random
scattered component. The Rician factor is denoted by K. Thus,
the utility function is given by

U = λ1AQ− λ2BTmax − λ3CEtotal

= A

(
aq − bq ln

(
1

ρn

))

−Bmax

ρnD0

rn
+

−C∆ + 4
3C0

(
1− ρn

ρ0

)
f


−C

∑
n∈N

(
pnρnD0

rn
+ωcf

2

(
−C∆+

4

3
C0

(
1− ρn

ρ0

)))
,

(24)

where λ1, λ2, and λ3 are hyperparameters that denote the
importance of data recovery quality, time delay, and total
energy cost, respectively. Based on the utility function, the
optimization problem is formulated as P1:

P1 : max
ρn,bn,pn,T

λ1

(
aq − bq ln

(
1

ρn

))
− λ2T

− λ3

∑
n∈N

(
pnρnD0

rn
+ ωcf

2

(
−C∆ +

4C0

3

(
1− ρn

ρ0

)))
s.t. C1 :

∑
n∈N

bn ≤ bmax, C2 :
∑
n∈N

pn ≤ pmax,

C3 : 0 < ρn ≤ ρ[2,2], n ∈ N ,

C4 :
ρnD0

rn
+

−C∆ + 4
3C0

(
1− ρn

ρ0

)
f

≤ T, ∀n ∈ N ,(25)

where the maximization in (24) is transferred into constraint
C4. bmax and pmax denote the sum bandwidth and transmission
power limitation, respectively. The optimization problem P1
is non-convex due to the term pnρnD0

rn
. To address this issue,

we introduce a set of auxiliary variables θn, n ∈ N , given by

θn =
1

2pnρnrn
, (26)

where the non-convex term is transferred as
pnρn
rn

= (pnρn)
2
θn +

1

4θnr2n
. (27)

With this auxiliary variable, the coupling between pnρn and
rn is removed, and the problem can be solved in an alternating
manner. With given p

(i−1)
n , T (i−1), b

(i−1)
n , ρ

(i−1)
n from the

previous iteration, the optimization problem with respect to
θn at i-th iteration is given by

P1.1 : max
θ
(i)
n

λ1Q
(i−1) − λ2T

(i−1)

− λ3

∑
n∈N

D0

((
p(i−1)
n ρi−1

n

)2
θ(i)n +

1

4θ
(i)
n (r

(i−1)
n )

2

)

− λ3

∑
n∈N

ωcf
2

(
−C∆ +

4

3
C0

(
1− ρ

(i−1)
n

ρ0

))
s.t. θ(i)n > 0, n ∈ N . (28)

Optimization problem P1.1 is convex with respect to θ.
The obtained θ(i) in i-th iteration is substituted into the
optimization problem with respect to the rest of the variables,
which formulates

P2.1 : max
ρ
(i)
n ,b

(i)
n ,p

(i)
n ,T (i)

λ1

∑
n∈N

(
aq − bq ln

(
1

ρ
(i)
n

))
− λ2T

(i)

− λ3

∑
n∈N

D0

(p(i)n ρ(i)n

)2
θ(i)n +

1

4θ
(i)
n

(
r
(i)
n

)2


− λ3

∑
n∈N

ωcf
2

(
−C∆ +

4

3
C0

(
1− ρ

(i)
n

ρ0

))
s.t. C1− C3

C4 :
ρnD0

rn
+

−C∆ + 4
3C0

(
1− ρn

ρ0

)
f

≤ T, ∀n ∈ N . (29)

Problem P2.1 is still non-convex due to the coupling
between p

(i)
n and ρ

(i)
n . The variable ρ

(i)
n also couples with data

rate rn in C4. To address this issue, we divide the variables
into two groups, ρ(i)n and {p(i)n , b

(i)
n , T (i)} and optimize them

alternatively by P2.2 and P2.3, which are given by

P2.2 : max
ρ
(i)
n

λ1

∑
n∈N

(
aq − bq ln

(
1

ρ
(i)
n

))
− λ2T

(i−1)

− λ3

∑
n∈N

D0

(p(i−1)
n ρ(i)n

)2
θ(i)n +

1

4θ
(i)
n

(
r
(i−1)
n

)2


− λ3

∑
n∈N

ωcf
2

(
−C∆ +

4

3
C0

(
1− ρ

(i)
n

ρ0

))

s.t. C3,

ρ
(i)
n D0

r
(i−1)
n

+
−C∆ + 4

3C0

(
1− ρ(i)

n

ρ0

)
f

≤ T (i−1),∀n ∈ N (30)
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and

P2.3 : max
p
(i)
n ,b

(i)
n ,T (i)

λ1

∑
n∈N

(
aq − bq ln

(
1

ρ
(i)
n

))
− λ2T

(i)

− λ3

∑
n∈N

D0

(p(i)n ρ(i)n

)2
θ(i)n +

1

4θ
(i)
n

(
r
(i)
n

)2


− λ3

∑
n∈N

ωcf
2

(
−C∆ +

4

3
C0

(
1− ρ

(i)
n

ρ0

))
s.t. C1, C2

ρ
(i)
n D0

r
(i)
n

+
−C∆ + 4

3C0

(
1− ρ(i)

n

ρ0

)
f

≤ T (i),∀n∈N .

(31)

Problems P2.2 and P2.3 are convex optimization problems,
which can be solved by CVX. By iteratively solving problems
P2.1, P2.2, and P2.3, a sub-optimal solution can be obtained.
The whole process is presented in Algorithm 1.

Algorithm 1 Joint optimization of ρ, b, p, T for utility maxi-
mization.

Initialize: ρ(0)n , p(0)n , b(0)n , and T (0). Iteration index i = 1.
while |U (i) − U (i−1)| ≥ ϵ do

Solve problem P2.1 to obtain θ
(i)
n by substituting ρ

(i−1)
n ,

p
(i−1)
n , b(i−1)

n , and T (i−1)

Solve problem P2.2 to obtain ρ
(i)
n with given θ

(i)
n , p(i−1)

n ,
b
(i−1)
n , and T (i−1)

Solve problem P2.3 to obtain p
(i)
n , b(i)n , and T (i)

i = i+ 1
end while

B. Simulation Results of the Utility Maximization Problem in
Downlink SemCom

The simulation results of the proposed optimization al-
gorithm for utility maximization of the LSDFT SemCom
system are presented in this section. In the simulation, the
number of receivers is fixed at N = 5, and the noise power
spectral density is given by −174dBm/Hz. The computational
efficiency ωc and GPU frequency f are given by ωc = 10−38

and f = 1350MHz, respectively [61]. The default maximum
sum transmission power and sum bandwidth are given by
pmax = 50W and bmax = 5000Hz, respectively. The default
distance vector for single sender and multiple receivers is
randomly generated from 1 to 1000 meters through a uniform
distribution. Benchmark scenarios include

• JPEG+LDPC: The required computation for JPEG is
much less than SemCom scenarios including JSCC and
our proposed methods. Thus, the computational cost term
is removed from the utility calculation in this benchmark,
which makes the optimization problem easy to solve.

• JSCC: A SemCom benchmark based on neural network,
and its neural network structure is given in [19]. The first
four layers in the encoder and all the layers in the decoder

are with fixed size. The compression rate only influences
the size of the fifth layer with description “Conv 5 ×
5 × c/1”, where parameter c decides the compression
rate. Thus, its computational complexity can be written
as C = A + Bρn The optimization for this scenario is
easy to solve because the computation cost is a linear
term.
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Fig. 12: Impact of total bandwidth on utility.

The utility across various total bandwidth limits, denoted
as bmax, is depicted in Fig. 12. For this simulation, the
hyperparameters are set to λ1 = λ2 = λ3 = 0.33, reflecting
the equal weighting of recovery quality, time delay, and energy
cost. The total bandwidth constraint varies from 1000 to
8000 to simulate scenarios under extremely limited commu-
nication resources. It is apparent that the proposed LSDFT
scenario surpasses both JSCC and JPEG combined with LDPC
within the examined bandwidth limitation, demonstrating its
effectiveness. Notably, the JPEG combined with the LDPC
scenario achieves higher utility than JSCC, attributable to
its lower computational demands while maintaining close
recovery quality, particularly at a compression rate of 0.03.
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Fig. 13: Impacts of distance between sender and receivers on
time, energy cost, and utility.

The impact of the sender-receiver distance on time delay,
energy cost, and overall utility is illustrated in Fig. 13. In this
simulation, distances are systematically generated by scaling
the default distance vector to minimize the influence of random
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variation. It is observed that an increase in distance leads to
a marginal rise in time delay. The time delay is determined
by both computing time and transmission time, and this effect
mitigates the impact of reduced channel gain. In contrast, en-
ergy costs escalate more significantly with increased distance,
as transmitting over longer distances demands greater energy.
The utility curve clearly demonstrates that greater distances
between the sender and receivers diminish the overall utility
of the SemCom system. This reduction in utility is primarily
due to lower channel efficiency, resulting in prolonged trans-
mission times and larger energy costs.
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Fig. 14: Impact of λ1 on energy cost and compression rate.

The simulation of system performance, considering varying
weights of recovery quality, time delay, and energy cost, is
illustrated in Fig. 14. In the objective function, recovery quality
contributes positively, whereas time delay and energy cost have
negative impacts. To study the impact of hyperparameters,
we adjust the value of λ1, and calculated the other two
hyperparameters by λ2 = λ3 = 1−λ1

2 . The results reveal that
the compression rate notably decreases as λ1 increases. This is
because a higher compression rate can effectively reduce the
time and energy costs associated with data transmission. It is
important to note that the energy cost is influenced by both
computational and communication factors. However, in our
specific case study, the energy cost of communication is the
predominant factor. Consequently, the energy cost displayed
on the left y-axis also decreases as the compression rate
decreases.

VI. CONCLUSION AND DISCUSSION

A. Summarizing the Paper

We designed a post-deployment fine-tunable semantic com-
munication (FTSC) framework, which is the first semantic
communication framework that can adjust the knowledge base
to accommodate unknown datasets after the deployment of
the encoder and decoder. The proposed FTSC is based on the
VQ-VAE-2 model and supports two fine-tuning modes, i.e.,
DFT and LSDFT. The DFT is a fine-tuning scenario without
gradient transmission from the receiver end to the sender end
but still requires additional original image transmission. The
LSDFT scenario further reduces communication overhead by

intermediate loss calculation at the cost of acceptable degra-
dation of performance. In the simulation, both two scenarios
in FTSC have shown an advantage in image recovery quality
over traditional methods on multiple datasets.

B. Considering Models beyond VQ-VAE-2

It is possible to extend FTSC to other neural networks with
encoder-decoder structures, such as variational autoencoder
(VAE) [62], [63], which is widely used for semantic com-
munication.

To implement such an extension, we need the following two
changes: (1) remove the operations on the embedding space
because VAE does not have it; (2) deal with the data type
difference on the latent space because the latent space of VQ-
VAE-2 is saved with quantized integers while that of VAE is
saved with float numbers.

To implement the extension in the proposed decoder fine-
tuning (DFT) scenario, we need to freeze the VAE encoder at
the sender side. The latent space and original images need
to be transmitted to fine-tune the decoder at the receiver
side. With a traditional encoder-decoder VAE structure, the
proposed method can be extended smoothly without additional
operations on embedding space. The extension in the proposed
latent space-based decoder fine-tuning (LSDFT) is similar to
that in DFT. The difference lies in the loss calculation at the
receiver side because the shape of the latent space of VQ-
VAE-2 and VAE are different.

To summarize, we can extend FTSC to other base neural
network models with encoder-decoder structure [64]–[68] with
proper modifications, but the performance and computational
cost need to be verified through experiments.

C. Future Directions

In addition to Section VI-B discussed above, additional
future research can be facilitated in the following two di-
rections. Firstly, improvement in the encoder and decoder
network design can improve the fundamental performance of
the semantic communication system. Secondly, the errorless
transmission of the latent space under noisy channels is
expected to improve the recovery quality. Furthermore, the
study on balancing the computational cost and the communi-
cation cost under more practical and complicated use cases
is necessary. Thirdly, crucial fine-tuning of the embedding
space results in non-negligible overhead. To overcome this
issue, further study, including better training methods that
accelerate convergence and balancing the size of embedding
space and performance according to specific tasks, can be
considered. Towards practical applications, more factors can
be considered, e.g., imperfect channel estimation, more types
of channel models, and multi-antenna users.
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