2518

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, VOL. 8, NO. 3, JUNE 2024

Exploiting Type I Adversarial Examples to Hide Data
Information: A New Privacy-Preserving Approach

Song Gao"”, Xiaoxuan Wang ', Bingbing Song ", Renyang Liu”, Shaowen Yao"”, Wei Zhou”, Member, IEEE,
and Shui Yu'”, Fellow, IEEE
Abstract—Deep neural networks (DNNs) are sensitive to adver- 1/ Adversarial example.
sarial examples which are generated by corrupting benign exam- || . || L. norm.
ples with imperceptible perturbations, or have significant changes P y .
but can still achieve original prediction results. The latter case 9 A well-trained DNN model.
g p
is termed as the Type I adversarial example which, however, has 0 Parameters of f.
limited attention in the literature. In this paper, we introduce two  H(+) A well-trained DNN model without the final Soft-
methods, termed HRG and GAG, to generate Type I adversarial max layer.
exam[.)les and a.ttempt to ap[.)ly them to the Privacy-preserving G() A generator. G, is the encoder of G that projects
Machl.ne Learning asa Service (MLaaS). Existing methods fqr 2 into the latent representation 2, and Gye. is the
the privacy-preserving MLaaS are mostly based on cryptographic
techniques, which often incur additional communication and com- decoder of G that reconstructs z based on z. G,
putation overhead, while using Type I adversarial examples to hide means a generator with parameters w.
users’ privacy data is a brand-new exploration. Specifically, HRG D (-) A discriminator with parameters ¢.
utilizes the high-level representations of DNNs to guide generators, lip.(+) Per-pixel clipping. The clipped results will be in
and GAG leverages the generative adversarial network to trans- -neiehborhood of 0
form original images. Our solution does not involve any model e-neig ; . . .
modifications and allows DNNs to run directly on transformed K L[P HQ} Kullback-Leibler divergence. P is a true distribu-
data, thus arousing no additional communication and computa- tion and @ is a approximate distribution.
tion overhead. Extensive experiments on MNIST, CIFAR-10, and ¢ Random Gaussian noise.

ImageNet show that HRG can perfectly hide images into noise
and achieve similar accuracy as the original accuracy, and GAG
can generate natural images that are completely different from the
original images with a small loss of accuracy.

Index Terms—Type 1 adversarial examples, deep neural
networks, privacy-preserving MLaaS.

NOMENCLATURE
x Original (unmodified, benign, clean) input exam-
ple.
Y The ground truth label of x in the classification

task,y = 1,2,...,C, where C'is the total number
of categories.
r Adversarial perturbation.
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I. INTRODUCTION

EEP neural networks (DNNSs) have achieved remarkable

performance and empowered a wide range of applications
in various domains [1], [2]. However, DNNs have been demon-
strated to be fragile to adversarial examples, that is, adding
crafted subtle perturbations to benign examples can easily fool
a well-trained DNN [3], [4]. Adversarial examples pose a sig-
nificant threat to DNNs in security-critical applications. For
instance, adversarial traffic signs could mislead autonomous
driving systems and threaten the safety of traffic participants [5].
Many studies have been proposed to design and resist adversarial
examples [6], [7], [8], [9], [10], [11], [12], [13], [14], [15],
[16], [17], [18], which, however, mainly focus on the Type
IT adversarial example. There is another type of adversarial
example, the Type I adversarial example, which has received
limited attention. Type I adversarial examples have noticeable
transformations but can still achieve original predictions from
the target model. Type I adversarial examples also threaten
DNNss in that attackers could transform illegal images or videos
into Type I adversarial versions to avoid detection by some deep
learning detectors.

Adversarial examples are not always bad, some re-
searches [15], [16] show that they can be used to study the
weaknesses of DNNs, and can augment training datasets to im-
prove the generalization and robustness of DNNs. In this paper,
we explore a new application for Type I adversarial examples,
applying them to the privacy-preserving Machine Learning as
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Fig. 1.  Illustration of applying the Type I adversarial example to the privacy-
preserving MLaaS. Left: Users send their original images to the Cloud to achieve
desired results, which exposes the potential risk of data leakage. Right: Users
send the Type I adversarial version of their original data to the Cloud without
revealing data information.

a Service (MLaaS). MLaaS aims to provide machine learning
services on the Cloud, and users can take advantage of cloud
services without having to worry about data gathering, model
training, and service maintenance. Nevertheless, using cloud
services generally requires sharing data with service providers,
which is often privacy sensitive and may create security con-
cerns. Existing solutions to this issue mainly adopt crypto-
graphic techniques, such as Secure Multi-Party Computation
(SMCO) [19], [20], [21], Trusted Computing Base (TCB) [22],
[23], and Homomorphic Encryption (HE) [24], [25], [26]. Using
Type I adversarial examples to prevent DNNs from directly
accessing raw data is a whole new way in which users can achieve
desired results by sending the Type I adversarial version of their
private data to the Cloud without revealing data information (see
Fig. I).

To achieve our purpose, we propose two strategies, high-level
representation guiding (HRG) and generative adversarial guid-
ing (GAG), to generate Type I adversarial examples. HRG sets
the loss function as the difference between high-level repre-
sentations of DNNs induced by raw and transformed examples
to guide the training of generators. HRG is very simple and
efficient, but it has no control over the generated Type I adver-
sarial examples, usually hiding data information into noise. To
obtain natural transformed examples, GAG first takes advantage
of the auxiliary classifier generative adversarial network (AC-
GAN) [27] to transform examples from one class to another
class, and then adopts a strategy similar to HRG to produce
subtle perturbations to the generated examples to obtain original
predictions. Our solution is particularly simple and does not
require any operations other than transforming private data with
generators. Therefore, there are no modifications to DNNs, nor
is there additional computation and communication overhead in
the inference process.

In summary, our contributions are as follows:
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® We explore a new way for the privacy-preserving MLaaS
that employs the Type I adversarial example to conceal
the original information of input data. Our solution is
efficient and does not incur additional computation and
communication overhead in the inference phase. Users
simply send the Type I adversarial version of their private
data to the Cloud to get desired results, avoiding the risk
of data leakage.

® We propose two approaches to generate Type I adversarial
examples, one exploits the high-level representation guid-
ing to guide generators to hide raw data into noise, and
the other leverages the generative adversarial network to
generate natural examples.

e Extensive experiments on three real datasets verify that
our approaches can effectively hide data information while
achieving reasonable classification accuracy. Meanwhile,
due to our methods do not increase the extra calculation of
DNN:gs, they can be applied to large-scale images.

The rest of this work is organized as follows: The related
work is shown in Section II, and the proposed approaches are
presented in Section III. The experimental results and analyses
are shown in Section IV. Finally, Section V shows conclusions.

II. RELATED WORK

In this section, we briefly describe different types of ad-
versarial examples and review existing studies on the privacy-
preserving MLaaS.

A. Adversarial Examples

Adversarial examples mainly include two types: the Type
I adversarial example and the Type II adversarial example.
Methods for generating Type II adversarial examples aim to
minimize the difference between the benign example and the
adversarial example while misleading DNN5 to produce wrong
results:

min [[rll, st fz+7.0) #y. ()

And the objective of producing Type I adversarial samples
can be described as:

¥ = G(x)
subjectto  f1(z) = f1(2)
fa(@) # fa(a'), 2

where f; can be a DNN-based classifier, and f> can be a group of
human annotators. Fig. 2 shows an intuitive explanation, we can
see that the Type II adversarial image is still “3” but is identified
as “5”, and the Type I adversarial image is really changed to “5”
but the neural network still thinks of it as “3”.

Many advanced approaches have been presented to generate
Type Il adversarial examples [3], [4], [7], [8],[9], [10], [11],[12],
[13]. For example, Goodfellow et al. [4] presented FGSM that
performs a one-step update along the direction of the gradient
at each pixel to produce adversarial images. Dong et al. [9]
introduced MIM, in which they added a momentum term in
the iteration process to generate adversarial images. Carlini and
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(b) Prediction result: “5”
85.6% confidence

(a) Prediction result: “3”
99.9% confidence

(c) Prediction result: “3”
87.7% confidence

Fig. 2. Image and its adversarial versions. (a) Is an original image, (b) is
(a)’s Type II adversarial version, and (c) is (a)’s Type I adversarial version. The
subtitle of each image is the prediction result and confidence. The original image
can be correctly identified as “3” with 99.9% confidence, its Type II adversarial
version is still “3” but is recognized as “5” with 85.6% confidence, and its Type
T adversarial version is really transformed to “5” but is still identified as *“3” with
87.7% confidence.

Wagner [10] treated the task of producing adversarial samples as
an optimization problem, and transformed adversarial samples
into the argtanh space for the flexible use of optimization
solvers. Zhao et al. [11] introduced Natural GAN based on
WGAN [28] to generate natural adversarial examples.

Unlike the Type II adversarial example, the Type I adversarial
example has received very limited attention. Tang et al. [29]
introduced a supervised extension of the original variational
autoencoder (VAE) [30], named supervised variational autoen-
coder (SVAE), to generate Type I adversarial examples. Sim-
ilarly, He et al. [31] designed a supervised extension of the
original generative adversarial network (GAN) [32] to generate
Type I adversarial examples. These two methods integrate the
image transformation task and the original prediction task into a
unified training process, which is unstable and computationally
expensive. In this study, we propose two methods, termed HRG
and GAG, to generate Type I adversarial examples. HRG simply
transforms original images into noise. And GAG treats the image
transformation task and the original prediction task as separate
subtasks, which simplifies the training difficulty and reduces the
training cost.

B. Privacy-Preserving MLaaS

With the rapid development of Big Data, cloud computing
and mobile internet, the scope of personal confidential infor-
mation has become extensive and vague. Data such as health
data [33], [34] and traffic sensor data [35] may pose a threat
to personal privacy. The purpose of privacy-preserving MLaaS
is to allow users to use online machine learning services with-
out worrying about security issues. Existing methods for the
privacy-preserving MLaaS can be roughly divided into three
categories: Secure Multi-Party Computation (SMC), Trusted
Computing Base (TCB), and Homomorphic Encryption (HE).
SMC-based methods such as SecureML [19], DeepSecure [20]
and EzPC [21] utilize two-party computation techniques to
design scalable and low-latency systems for secure neural net-
work inference. However, SMC-based methods require a large
amount of communication between participating parties. TCB-
based methods [22], [23] provide hardware-based primitives
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that enable users to execute their private data in shielded exe-
cution environments. Unfortunately, it has been demonstrated
that several attacks can allow unprivileged programs to ex-
tract content from memory that only privileged programs can
access [36]. HE-based methods focus on applying encrypted
data to machine learning models. Graepel et al. [37] demon-
strated that it is possible to implement confidential machine
learning based on the leveled homomorphic encryption scheme.
Gilad-Bachrach et al. [24] converted the floating-point num-
bers in neural networks to integers with appropriate scaling,
and replaced pooling operations and activation functions using
polynomial approximations. Similarly, Hesamifard et al. [25]
proposed CryptoDL that performs both training and inference
on encrypted data. Takabi et al. [26] improved the efficiency of
cryptographic neural networks by using optimization techniques
and efficient GPU-based implementations. However, HE-based
methods need to modify DNNs and bring huge computation
overhead, which makes their performance far from satisfactory
in practical applications. In this work, we introduce a brand-new
strategy that takes advantage of Type I adversarial examples to
mask data information. In this way, no modifications to DNNss,
and no additional computation and communication overhead are
incurred during the inference process.

III. METHODOLOGY

The basic idea behind our solution can be described as uti-
lizing Type I adversarial examples for privacy preservation.
We adopt the autoencoder architecture as generators and pro-
pose two methods, high-level representation guiding (HRG)
and generative adversarial guiding (GAG), to train generators.
An autoencoder consists of an encoder and a decoder. The
encoder G, projects z into the latent representation z, i.e.,
z = Gene(x), then the decoder G 4. reconstructs x based on z,
ie., xy = Gaec(z + ).

A. High-Level Representation Guiding

For the generated Type I adversarial examples, they should
be able to effectively hide data information and obtain good
prediction accuracy. To achieve this goal, we propose high-
level representation guiding (HRG) similar to [38] to guide
the training of generators. The specific embodiment corre-
sponds to the high-level representation pairing loss. We try
three schemes to calculate the high-level representation pairing
loss, i.e., Log-Likelihood Loss, Ly Norm, and Kullback-Leibler
(K L)-Divergence. Fig. 3 shows the illustrations of the three
schemes.

1) Log-Likelihood Loss: Log-Likelihood Loss is one of the
most widely used loss functions in deep learning classification
tasks, and is usually used in conjunction with the Softmax
activation function, by the following formula:

c
Lossp, = — Z yilng;, (3)

i=1

here, y; denotes the value of category ¢ in the true label, and y; is
the value of category ¢ in the predicted label. One-hot encoding
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Three training schemes for HRG. x is an original image, and x’ stands for its Type I adversarial version. DNN is the model deployed on the Cloud.

The parameters of the DNN are shared and fixed. (a): Using Log-Likelihood Loss to train the generator. (b): Lo norm is leveraged as the loss function.

(c): K L-Divergence is adopted as the loss function.

is usually utilized to encode data’s true labels, that is, the value
of the correct category in a label is 1, and the other values are 0.
Thus, Lossy, can also be written as:

Lossy, = —Inyy, @

where g is the value of the true category in the predicted label.
2) Lo Norm: Lo Norm measures the gap between the outputs
activated by the original image and the generated Type I adver-
sarial image. As shown in Fig. 3(b), for an image =, it is first fed
into a generator to obtain its Type I adversarial image x’, then
2 and 2’ are fed into the target DNN to obtain their high-level
representations, and finally, the distance between their high-level
representations is calculated by the following formula:

Lossp, = ||H(2") — H(z)]]2. (5)

3) K L-Divergence: K L-Divergence (KLD) is used to mea-
sure the difference between two probability distributions. As-
suming P(Z) is a true distribution and )(Z) is the approximate
distribution used to fit P(Z), the KLD is expressed as:

KLPDIQZ)] = T [Pe)oe 13 |
zeZ

In this study, H(z) is the true distribution, and H(2') is
the approximate distribution used to fit H(x) (see Fig. 3(c)).
Therefore, KLD is formulated as:

Lossk = KL[H (z)||H(2")]. (7

(6)

HRG is very simple and converges easily in the training pro-
cess, but it has no control over the generated Type I adversarial
examples and can only hide data information into noise.

B. Generative Adversarial Guiding

The proposed generative adversarial guiding (GAG) consists
of two generators G* and G™, a discriminator D, and a target
DNN f thatis named the function model. As shown in Fig. 4, the
training process of GAG consists of two steps: training G* and
training G™. G* and D form a generative adversarial network that
optimizes the transformation of images from the original space

to the target space. And the transformation should not be random,
but from one class to another in the same distribution. Therefore,
we add the label information of images to the generative process,
and build the training loss based on ACGAN:

(@, )ar,p = argmin argmaz Dy (q(z:)|lp(zx))

= Eq,nq(a,) 10g [Dg (24)]
+ ALoss,, (8)

here, x; is the target example of x, () is the data distribution
of x;, p(x) is the data distribution of x, A denotes a hyper-
parameter, and Loss, is the classification loss that is defined as:

Loss. = E[logP(c = y|xt)]
+ EllogP(c = y|G;, (x))]- ©)

In the training process, we randomly sample x with the label
y from the entire dataset, and z; is randomly sampled from
the class y; which can be calculated using (y + 1)%C, where
% means taking the remainder. Training G* is considered the
first step of GAG, which ensures that an original image can
be transformed into a completely different natural image. Next,
we fix the parameters of G* and train G™. G™ is responsible
for generating imperceptible perturbations to the transformed
image so that an original image and its transformed image have
the same outputs on the target model. We adopt a strategy similar
to HRG to train G", i.e., using Lo norm to measure the difference
between high-level representations of original images and their
Type I versions, which is demonstrated to be more effective
than Log-Likelihood Loss and KL-Divergence in experiments.
However, HRG will create unexpected perturbations that destroy
the naturalness of transformed images. To limit the generated
perturbations, we clip them before they are added to transformed
images. Mathematically, the loss function for the training of
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Framework of GAG. It is composed of two generators G** and G™, a discriminator D, and a function model £. In the first step, G* and D form a generative

adversarial network that optimizes the transformation of = from the original space to the target space. Then, G is fixed, and G™ is optimized by the high-level
representation guiding to generate perturbations that are added to the transformed images after clipping to obtain original predictions.

G is:

Loss, = || f(z) = f(Clipe(G™(G"(2))) + z)ll2,  (10)

here, Clip.{.} performs per-pixel clipping of generated per-
turbations. In the inference phase, an original image can get a
natural image that is completely different from it but has the
same prediction result after passing through the two generators.

IV. EXPERIMENTS

In this section, we first present the experimental settings,
then comprehensively evaluate our approaches in different as-
pects. The code of this study is available at: https://github.com/
Gaoyitu/HRG_GAG.

A. Experimental Settings

1) Datasets: We evaluate our proposed methods on MNIST,
CIFAR-10, and ImageNet. MNIST contains 60000 training im-
ages and 10000 testing images with image shape (28 x 28).
CIFAR-10 contains 50000 training images and 10000 testing
images with shape (32 x 32 x 3). For ImageNet, limited by
computing resources, we select 10 categories, i.e., axolotl, ice
cream, chameleon, admiral, ostrich, rapeseed, goldfish, hum-
mingbird, violin, and teapot, from ILSVRC2012, each class
contains 1300 training images and 50 testing images. The size
of images in ImageNet is different, so we first crop the long edge
or pad the short edge to square all images and then resize the
images to (224 x 224 x 3) for HRG. On this basis, we further
resize all images to (64 x 64 x 3) for GAG.

TABLE I
CLASSIFIER ARCHITECTURES

Cl Cc2 C3
Conv(32,3,1), ReLU  Conv(32,3,1), ReLU Conv(64,3,1), ReLU

MaxPooling Conv(32,3,1), ReLU Conv(64,3,1), ReLU
Conv(64,3,1), ReLU MaxPooling MaxPooling
MaxPooling Conv(64,3,1), ReLU  Conv(128,3,1), ReLU
FC-200 Conv(64,3,1), ReLU  Conv(128,3,1), ReLU
Softmax 10 MaxPooling MaxPooling
FC-200 FC-256
FC-200 FC-256
Softmax 10 Softmax 10

These three classifiers are designed by us, so it is specifically explained here in the form
of a table.

TABLE 11
CLASSIFIERS FOR MNIST, CIFAR-10, AND IMAGENET

MNIST CIFAR-10  ImageNet
Cl C3 VGG16
C2 VGG16 MobileNet

2) Classifiers: To reduce the randomness of experimental
results and test the transferability of generated Type I adversarial
images, we select two classifiers for each dataset. Table I shows
the detailed structures of three classifiers that we design for
MNIST (C1 and C2) and CIFAR-10 (C3). Table II shows all
classifiers that are utilized in our experiments. We remove fully-
connected layers of VGG16 [39] and MobileNet [40], and re-add
a fully-connected layer with 10 neurons on them. All classifiers
are trained by Adam optimizer [41] (81 = 0.9, B2 = 0.999) with
a batch size of 128, a learning rate of 0.0001, and epochs of 50.
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3) Generators and Discriminators: Table III presents the
structural details of generators designed for HRG. The images in
MNIST are relatively simple, so we design a complex generator
to compress original images into a small space to ensure that the
image information can be successfully hidden. For CIFAR-10
and ImageNet, we adopt fully convolutional networks to reduce
model parameters. Tables IV and V show the structural details of
generators and discriminators designed for GAG. For the same
dataset, Gt and G™ have the same structures.

4) Baselines: Since most of existing methods for the privacy-
preserving MLaaS only have experimental results on MNIST,
we first compare HRG with SecureML [19], DeepSecure [20],
EzPC [21], CryptoNets [24] and CryptoCNN [25] (where a tem-
porary name is used here for convenience) on MNIST, and then
evaluate the performance of HRG and GAG through extensive
experiments on different datasets.

5) Implementation Details: All generators and discrimina-
tors are trained by Adam optimizer with 81 = 0.5, S = 0.999.
For HRG, we set the batch size to 256 for MNIST and CIFAR-10,
and 32 for ImageNet. The learning rate = 0.0001 and epochs
= 100 for all datasets. For GAG, we set learning rate = 0.002,
epochs = 5000, batch size = 256 for all datasets. Our exper-
iments are performed on a PC with an Intel Core 17-10700 K
CPU, 32 GB RAM, and a Nvidia GeForce RTX 3090.

MNIST CIFAR-10 ImageNet
Encoder(Genc) Decoder(G gec) Encoder(Gene) Decoder(G gec) Encoder(Genc) Decoder(G gec)
Conv(64,3,2) FC-2048 Conv(128,3,2) ConvT(1024,3,2) Conv(128,3,2) ConvT(1024,3,2)
BN, LeakyReLU BN, LeakyReLU BN, ReLU BN, LeakyReLU BN, ReLU
Conv(128,3,2) ConvT(256,3,1) Conv(256,3,2) ConvT(512,3,2) Conv(256,3,2) ConvT(1024,3,2)
BN, LeakyReLU BN, ReLU BN, LeakyReLU BN, ReLU BN, LeakyReLU BN, ReLU
Conv(256,3,2) ConvT(128,3,2) Conv(512,3,2) ConvT(256,3,2) Conv(512,3,2) ConvT(512,3,2)
BN, LeakyReLU BN, ReLU BN, LeakyReLU BN, ReLU BN, LeakyReLU BN, ReLU
Conv(512,3,2) ConvT(64,3,2) ConvT(128,3,2) Conv(1024,3,2) ConvT(256,3,2)
BN, LeakyReL BN, ReL BN, ReL BN, LeakyReL BN, ReL
, LeakyReLU , ReLU Conv(1024.3.2) N, ReLU N, LeakyReLU N, ReLU
Conv(512,3,1) ComvT(3232) | ooy o o ConvT(128,3,2)
BN, LeakyReLU BN, ReLU ’ ¥ Conv(3,5,1) Conv(1024,3,2) BN, ReLLU
FC-512 Conv(1,5,1) Tanh BN, LeakyReLU Conv(3,5,1)
FC-64 Tanh Tanh
TABLE IV
THE ARCHITECTURES OF GENERATORS AND DISCRIMINATORS FOR MNIST AND CIFAR-10
MNIST CIFAR-10
t n t mn
G'IG D G'IG D
Encoder Decoder Encoder Decoder
C 64,3,2 C 128,3,2
Conv(6432) | ComvT(256.4,1) L‘:;l( ReLU) Conv(128,52) | ConvI(512,5.2) L";Z}f RGLU)
BN, LeakyReLU | BN, ReLU Y BN, LeakyReLU | BN, ReLU Y
Dropout 0.5 Dropout 0.5
C 128,3,2 C 256,3,2
Conv(1283,2) | ConvI(128,3,2) BNOHI:’éak RCL)U Conv(256,5.2) | ConvT(256,5.2) BNOHIjéak ReL)U
BN, LeakyReLU | BN, ReLU Qe BN, LeakyReLU | BN, ReLU s ey
Dropout 0.5 Dropout 0.5
Conv(256,3,2) Conv(512,3,2)
ConvT(64,3,2 ConvT(128,5,2
Conv(256,3.2) ‘];“NV i{eLU ) BN, LeakyReLU Conv(512.5,2) 01’3“1; (ReLU ) BN, LeakyReLU
BN, LeakyReLU ’ Dropout 0.5 BN, LeakyReLU ’ Dropout 0.5
1,5,1 1
Conv(L,5,1) Sigmoid 1 | Softmax 10 Conv(3,5,1) Sigmoid 1 | Softmax 10
Tanh Tanh
TABLE V
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ImageNet
ticm
GG 5
Encoder Decoder
128,5,2
Conv(128,52) | ConvT(1024.5.2) Conv(128.5.2)

BN, LeakyReLU

BN, ReLU

LeakyReLU
Dropout (0.5)

Conv(256,5,2)
BN, LeakyReLU

ConvT(512,5,2)
BN, ReLU

Conv(256,5,2)
BN, LeakyReLU
Dropout (0.5)

Conv(512,5,2)
BN, LeakyReLU

ConvT(256,5,2)
BN, ReLU

Conv(512,5,2)
BN, LeakyReLU
Dropout (0.5)

Conv(1024,5,2)
BN, LeakyReLU

ConvT(128,5,2)

Conv(1024,5,2)
BN, LeakyReLU

BN, RelL
» ReLU Dropout (0.5)
Conv(3.5,1) Sigmoid 1 | Softmax 10
Tanh

B. Experimental Design

To comprehensively evaluate the performance of our new

attempt, we design different experiments for the two proposed
methods. 1) Comparison with the baselines. Due to expensive
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TABLE VI
COMPARISON WITH THE STATE-OF-THE-ART SOLUTIONS ON MNIST
Method Accuracy Running Time (s) Data Transfer Predictions/Hour
SecureML* 93.40% 759 N/A 738
DeepSecure* 98.95% 6328 6479 GB 379
EzPC* 99.00% 41779 4104 GB 709
CryptoNets 98.95% 570 596 MB 51739
CryptoCNN 99.25% 320 437 MB 163840
HRG (ours) 99.26 % 2 61 MB 22346000
*: The values are extrapolated.
TABLE VII

CLASSIFICATION ACCURACY OF HRG WITH DIFFERENT TRAINING SCHEMES ON MNIST, CIFAR-10, AND IMAGENET

Training Scheme MNIST CIFAR-10 ImageNet '
Cl C2 C3 VGG16 VGG16 MobileNet
NA 99.30% 99.42% 87.25% 90.65% 93.60% 98.40%
Log-Likelihood Loss 99.26% 99.25% 84.57% 85.15% 86.40% 89.20%
Lo Norm 99.32% 99.41% 85.03% 85.36% 87.60% 89.80%
K L-Divergence 99.32% 99.37% 82.52% 84.82% 84.20% 84.00%

NA means no training scheme.

computation and communication overhead, traditional methods,
such as SMC and HE, are mostly validated on MNIST. There-
fore, we compare and analyze HRG with traditional methods
in accuracy, running time, data transfer and predictions per
hour on MNIST. 2) Performances of HRG on different datasets.
Evaluating the performances of HRG on MNIST, CIFAR-10 and
ImageNet, and using three different training schemes to verify
HRG’s feasibility on images at different scales. In addition, we
verify the ability of HRG to mask the original information of
input images by visualizing transformed images. 3) Hiding data
information in natural images. Verifying the feasibility of GAG
based on the accuracy of transformed images under different
perturbation intensity on the target classifier. And evaluating and
analyzing the performances of GAG for privacy preservation by
visualizing transformed images.

C. Quantitative Evaluation

In this section, we comprehensively analyze and exhibit the
performances of HRG and GAG following the Section “Exper-
imental Design”.

1) Comparison With the Baselines: We adopt C1 as the target
model deployed on the Cloud and Log-Likelihood Loss to
train a generator. Table VI shows the performances of different
methods on MNIST. We can see that HRG achieves the highest
classification accuracy, the least running time, the least data
transfer, and the most predictions within an hour. SMC-based
methods (SecureML, DeepSecure, and EzPC) require inter-
actions between the client and server for each operation and
therefore incur a huge amount of communication overhead. We
can see that the data transfer of DeepSecure is 6479 GB and
the data transfer of EzPC is 4104 GB. Meanwhile, SMC-based
methods have low prediction efficiency. It can be seen that
even the most efficient SecureML only makes 738 predictions
per hour. Compared with SMC-based methods, the efficiency
of HE-based methods (CryptoNets and CryptoCNN) has been
greatly improved. CryptoNets can make more than 50000 pre-
dictions per hour and CryptoCNN can make more than 160000

predictions per hour. Even so, their efficiency is much lower
than HRG. Compared with baselines, HRG adopts a completely
different way for privacy preservation, and it does not require
any additional communication and computation overhead for
providing privacy-preserving predictions. We can see that HRG
is extremely efficient and can make more than 20 million pre-
dictions per hour.

2) Performances of HRG on Different Datasets: Table VII
shows the classification accuracy of HRG with different training
schemes on different datasets. The row where NA is located
shows the classification accuracy of original images. On MNIST,
HRG achieves extraordinary classification accuracy on either
C1 or C2, especially on C1, the classification accuracy of Type
I adversarial images produced by the generators trained with Lo
Norm and KLD exceeds that of original images. On CIFAR-10,
Lo Norm performs the best, followed by Log-Likelihood Loss
and KLD. Similarly, L, Norm achieves the best performance,
followed by Log-Likelihood Loss and KLD on ImageNet. Over-
all, the generator trained by L, Norm is better than the generators
trained by Log-Likelihood Loss and KLD.

Besides reasonable classification accuracy, a strong
information-hiding effect is also necessary. We randomly select
an image from each category in each dataset and transform them
into Type I adversarial images. Fig. 5(a) shows the original
images and their Type I adversarial images from MNIST. We
can see that the Type I adversarial images can effectively hide
the original image information into noise in all cases. Fig. 5(b)
shows the original images and their Type I adversarial images
from CIFAR-10, and Fig. 5(c) shows the original images and
their Type I adversarial images from ImageNet. As we can
see, although the fully convolutional architecture is adopted
for generators, the generated Type I adversarial examples still
perfectly hide the original information of images.

In addition, from Fig. 5(c), we find that the Type I adversarial
images generated by generators trained with different schemes
for the same classifier are relatively similar, which means the
form of Type I adversarial examples mainly depends on the
target model. In other words, a well-trained generator is not
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Examples of original images and their Type I adversarial images in MNIST, CIFAR-10 and ImageNet. The Type I adversarial images are produced by

HRG with different loss functions. LLL is Log-Likelihood Loss, V16 is VGG16, and MN is MobileNet. In each sub-figure, the first column shows the original
images and the second to seventh columns show the transformed images. Obviously, the generated Type I adversarial images can effectively hide the original image

information into noise.
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Transferability of HRG on MNIST, CIFAR-10 and ImageNet. LLL is log-likelihood loss, V16 denotes VGG16, and MN denotes MobileNet. C1 LLL

represents the C1-specific generator trained by log-likelihood loss. It is can be seen that HRG has poor transferability, the Type I adversarial images produced by a
generator specific to one classifier have poor classification accuracy on another classifier.

transferable, a generator trained for a particular model is only
valid for that model. To verify our conjecture, we test the trans-
ferability of different generators. As shown in Fig. 6(a), shows
the transferability of different generators on MNIST, the green
bar chart represents the accuracy of transformed images on C1
and the yellow bar chart represents the accuracy of transformed
images on C2. We can intuitively see that the images generated
by the generator trained with C1 as the target model have good
accuracy on C1, but poor accuracy on C2. Similarly, the images

generated by the generator trained with C2 as the target model
have good accuracy on C2, but poor accuracy on Cl. This
characteristic is more pronounced on CIFAR-10 and ImageNet,
that is, the Type I adversarial images produced by a generator
specific to one classifier have poor classification accuracy on
another classifier. This is a good property that a generator is
paired with a target model. A potential attacker must obtain both
the transformed data and the desired model to get prediction
results, but still cannot obtain users’ original data.
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Fig. 7.

Examples of the generated Type I adversarial images by GAG under different perturbation intensity. C1, C3 and VGG16 are the target model for MNIST,

CIFAR-10 and ImageNet, respectively. The recognition rates at different perturbation intensity are marked on the top of the images, and the values of ¢ are marked
on the bottom of the images. We can see that GAG generates natural images to hide data’s original information.

3) Hiding Data Information in Natural Images: Hiding orig-
inal images in natural images is much more difficult than hiding
them in noise. Accordingly, the accuracy of GAG is slightly
lower than that of HRG. G? is responsible for transforming
original images into other natural images to mask data infor-
mation. However, the generated natural images do not gain the
original predictions on the target model. G is responsible for
generating perturbations that are added to the generated natural
images to obtain original predictions. Large perturbations can
improve the accuracy of the generated Type I adversarial images
on the target model but will destroy their naturalness. To balance
accuracy and naturalness, it is necessary to select an appropriate
superior limit of perturbations, i.e., selecting the appropriate
value of €. We select the value of ¢ with an interval of 0.02
between (0, 0.4]. Fig. 8 shows the line charts of perturbation
intensity and corresponding accuracy. On MNIST, C1 is used
as the target model, we can see that large perturbations are
required to obtain high accuracy. When ¢ is less than 0.14, the
accuracy hardly improves, and when ¢ is greater than 0.32, the
accuracy becomes stable. On CIFAR-10 and ImageNet, C3 and
VGGI16 are used as the target models, respectively. When ¢
is greater than 0.04, the accuracy increases rapidly, and when
¢ is greater than 0.14, the accuracy levels off. On the whole,
e is best set to 0.32 for MNIST and 0.14 for CIFAR-10 and
ImageNet. Fig. 7 shows some transformed images from MNIST,

0.8

accuracy
o
o

o
IS

0.2

—— MNIST
—— CIFAR-10
— ImageNet

0.0
0.00 0.04 0.08 0.14 0.20 0.28 0.32 0.40
perturbation intensity

Fig. 8. Classification accuracy of GAG under different perturbation intensity.
C1, C3 and VGG16 are used as the target model for MNIST, CIFAR-10 and
ImageNet, respectively.

CIFAR-10 and ImageNet, we pick out some important values
of ¢ to exhibit. ¢ = 0.0 means no perturbations are added to
the transformed images. The first column shows the original
images and the second to sixth columns show the generated
Type I adversarial images with different perturbation intensity.
Obviously, as € increases, the accuracy of the generated Type I
adversarial images increases, and accordingly the perturbations
in these images are more pronounced. In a word, GAG generates
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more natural images to hide data information at the cost of losing
some prediction accuracy.

V. CONCLUSION

In this paper, we explore a new solution for preserving the
privacy of data by implementing deep neural networks on trans-
formed data. Our solution leverages Type I adversarial examples
to hide the original information of raw data, and we propose two
methods, HRG and GAG, to generate Type I adversarial exam-
ples. Our solution can effectively hide data information without
incurring additional communication and computation overhead
in the prediction process. We conduct extensive experiments on
three real datasets and six DNN-based classifiers. The results
show that our solution provides efficient, accurate, and scalable
privacy-preserving predictions, and is suitable to be applied on
large-scale images.

One shortcoming of our solution is that the generator needs to
be deployed locally by users, which is unfriendly to non-expert
users due to lack of domain expertise and computing resources.
In addition, our solution directly returns raw prediction results,
which reduces the privacy of user data. In our future work, we
will investigate how to improve the friendliness of our solution
for non-expert users and explore effective ways to hide the
information of the prediction result.
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