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a b s t r a c t 

Deep neural networks have been shown vulnerable to adversarial attacks launched by ad- 

versarial examples. These examples’ transferability makes an attack in the real-world feasi- 

ble, which poses a security threat to deep learning. Considering the limited representation 

capacity of a single deep model, the transferability of an adversarial example generated 

by a single attack model would cause the failure of attacking other different models. In this 

paper, we propose a new adversarial attack method, named EnsembleFool, which flexibly in- 

tegrates multiple models to enhance adversarial examples’ transferability. Specifically, the 

model confidence concerning an input example reveals the risk of a successful attack. In 

an iterative attacking case, the result of a previous attack could guide us to enforce a new 

attack that possesses a higher probability of success. Regarding this, we design a series of 

integration strategies to improve the adversarial examples in each iteration. Extensive ex- 

periments on ImageNet indicate that the proposed method has superior attack performance 

and transferability than state-of-the-art methods. 

© 2021 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Deep neural networks enable intelligent systems to exhibit
high fidelity on interested tasks such as computer vision, nat-
ural language processing, speech recognition, and recommen-
dation, considerably lowering the human labours in real ap-
plications ( Kurakin et al., 2017 ). However, the intention to de-
fraud these models makes the systems to be possibly unsafe.
Especially, the adversarial examples ( Akhtar and Mian, 2018;
Szegedy et al., 2014 ), generated by adding undetectable pertur-
∗ Corresponding author. 
E-mail address: zwei@ynu.edu.cn (W. Zhou). 

https://doi.org/10.1016/j.cose.2021.102317 
0167-4048/© 2021 Elsevier Ltd. All rights reserved. 
bations into the original input, have the ability of misleading
the deep models and resulting in incorrect predictions( Déniz
et al., 2019; Pedraza et al., 2020; Zhao et al., 2020 ). As Fig. 1
illustrates, a well-trained model predicts the unperturbed in-
put as the true label with 95.62% confidence, whereas giving
a wrong label with 87.56% confidence when the image is cor-
rupted by well-designed noise. The deep models’ vulnerabil-
ity remains a critical safety issue and it is necessary to evalu-
ate the model robustness with respect to adversarial attacks.
Hence, advanced attack techniques are expected to cooperate

https://doi.org/10.1016/j.cose.2021.102317
http://www.sciencedirect.com/science/journal/01674048
http://www.elsevier.com/locate/cose
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2021.102317&domain=pdf
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Fig. 1 – An example of adversarial perturbations. First row: the clean image x classified as ”Bus” with 95.62% confidence by 

DNN models. Second row and Third row: the image x plus perturbations r classified as ”cat” and ”truck” with confidence 
87.56% and 90.23%, respectively. 
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ith the adversarial defense community to improve the safety 
f intelligent systems. 

The existing adversarial attack methods can be roughly 
ivided into two categories: (1) the white-box attack ( Carlini 
nd Wagner, 2017; Chen et al., 2020; Goodfellow et al., 2015; 
urakin et al., 2017 ) and (2) the black-box attack ( Brendel 
t al., 2018; Chen et al., 2019; 2017; Ren et al., 2020; Zhao 
t al., 2018 ). The white-box attack depicts a problem that 
he attacker has the knowledge of the structure and param- 
ters of the to-be-attacked model, which could generate ex- 
remely deceptive adversarial examples during attacking. For 
nstance, Goodfellow et al. (2015) proposed the fast gradient 
ign method (FGSM) that can effectively calculate the pertur- 
ation by adjusting the model’s gradients. Unlike the white- 
ox attack, the black-box attack only allows the model out- 
uts in terms of the adversarial inputs to be accessible, while 
he model details are absent. This poses a more difficult prob- 
em than the white-box attack because of the model’s lim- 
ted on-hand information. To handle this problem, recent re- 
earches indicate that adversarial examples have transfer- 
bility ( Liu et al., 2017 ), which is saying that the examples 
rafted for a given model can fool other unknown models.
his property inspires several state-of-the-art black-box at- 

acks ( Brendel et al., 2018; Chen et al., 2017; Zhao et al., 2018 ).
or example, MI-FGSM ( Dong et al., 2018 ) applies an iterative 
nd momentum technique into FGSM to generate improved 

dversarial examples, achieving enhanced attack ability in 

oth white-box and black-box cases. 
The transferability of adversarial examples endows the 

ethods mentioned above with the ability to attack pure deep 

odels. Unfortunately, when the models are equipped with 

ertain defense mechanisms, the above methods exhibit low 

fficacy of fooling the black-box models. For example, adver- 
arial training ( Song et al., 2020; Tramèr et al., 2018 ) and input
odification ( Cohen et al., 2019; Liu et al., 2019 ) are two typ-

cal ways to enhance the robustness of deep models in the 
lack-box case. This implies an imparity issue between differ- 
nt models, suggesting that it is not implementable to create 
 universal attack with a single model. Instead, the character- 
stics of multiple models could be simultaneously considered 

hen synthesizing the input perturbation such that the gen- 
rated example could be a threat to all the models. 

To further investigate the model diversity, we visualize the 
ttention maps of different deep models with varying archi- 
ectures through CAM ( Zhou et al., 2016 ). Fig. 2 shows that
he main focuses of different models during prediction are lo- 
ated in different spatial regions, where we illustrate using a 
eatmap mask and the focus difference are marked using red 

oxes. This verifies that different models would have resis- 
ance to attacks in different regions of the input image and 

ore importantly, the attack result of one model could be ben- 
ficial to attack another model. Hence, the input perturbation 

ould be improved by involving the expressed robustness of 
ultiple models. 
Inspired by the above analyses, in this paper, we propose 

 novel attack method, named as EnsembleFool. Specifically,
onsidering the attack map of a single model is limited and 

ifferent models possess different maps, we follow the MI- 
GSM framework, which integrates multiple models to enlarge 
he attack map such that the attacking capability is enhanced.
o implement a flexible integration process, we develop a se- 
ies of fusion strategies based on the attacking results in the 
revious iteration. This is motivated by the attack effect of an 

dversarial example that can be clearly expressed by the out- 
ut of the model, and hence, the output could guide the at- 
acking in the next iteration. In such a way, the adversarial 
xamples crafted by the ensemble of multiple models exhibit 
nhanced attacking ability in both white-box and black-box 
ases. The main contributions of this paper are summarized 

s follows: 

• We investigate the transferability of the adversarial exam- 
ples crafted by a single model, showing that the primary 
focuses of different models are located in different recep- 
tive fields and the attack map could not be shared between 

different models. This validates the necessity of integrat- 
ing multiple models in a flexible way. 
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Fig. 2 – Demonstration of the diverse discriminative regions in different models. The first column is clean image and the rest 
is adopting class activation mapping Zhou et al. (2016) to visualize the attention maps of three trained models–Inception v3 
Szegedy et al. (2016) , Inception v4 Szegedy et al. (2017) and Inception Resnet v2 Szegedy et al. (2017) . (Better viewed in color.). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• Based on MI-FGSM, we are well motivated to develop a
novel ensemble attack method called EnsembleFool, which
produces the adversarial examples by integrating the at-
tack results of multiple models in an adaptive way such
that the most informative attack could be dominant in
each attack iteration. 

• Extensive experiments validate the state-of-the-art perfor-
mance of the proposed method even in the cases of attack
models with defense mechanisms. 

The remainder of this paper is organized as follows. The
related works and the preliminary are briefly reviewed in
Section 2 and Section 3 , respectively. The proposed method
is introduced in Section 4.1 . The experiments are presented in
Section 5 , with the conclusion drawn in Section 6 . 

2. Related work 

In this section, we briefly review the relevant methods to the
current work, including adversarial attacking, attacking us-
ing ensemble of models, and adversarial defence. Adversar-
ial attacking. Deep neural networks have been shown vul-
nerable to adversarial examples ( Szegedy et al., 2014 ), pos-
ing the requirement of developing advanced attack meth-
ods to evaluate the robustness of the models. For exam-
ple, Goodfellow et al. (2015) argued that the primary rea-
son of the vulnerability was the linear nature of data in
high-dimensional spaces and proposed the fast gradient sign
method (FGSM) to generate adversarial examples by one sin-
gle gradient step. Kurakin et al. (2017) extended FGSM with an
iterative manner (I-FGSM) and demonstrated real-world ad-
versarial examples. Dong et al. (2018) proposed a broad class of
momentum-based iterative algorithms (MI-FGSM) to boost ad-
versarial attacking. Xie et al. (2019) and Dong et al. (2019) used
diverse inputs and translational invariance (TIM) to craft
more transferable examples, respectively. While these meth-
ods have achieved pleasing performance, the transferability of
adversarial examples is still a concerning factor in developing
novel techniques. 

Attacks using an ensemble of models. The representa-
tion capacity of a single deep model is limited, even in the
case of very deep architectures. This brings an issue that this
model’s attack effect cannot be completely transferred to an-
other model with a different architecture. If there is a signif-
icant difference between the model architectures, the trans-
ferability of the adversarial example could be considerably
reduced. To maximally enhance the transferability of adver-
sarial examples or boost the attack effect, multi-model fu-
sion is a promising way to compensate for the shortage of
a single model, which is seldomly considered. To the best of
our knowledge, the method MI-FGSM ( Dong et al., 2018 ) is an
early trial on assembling multiple models, which achieves im-
proved performance compared with single-model methods. In
detail, MI-FGSM forces the weight of each model to be fixed
during fusion. Differently, the current work advocates that dif-
ferent models have different focused regions in the input im-
age, resulting in different attack maps. These maps could be
evaluated by using the model outputs, which can further guide
the attacking process in future iterations. Hence, the models
to be assembled should be fused in a flexible way instead of a
fixed manner. 

Adversarial defense. Facing the threat of adversarial at-
tacking, adversarial defense has recently been deeply investi-
gated to alleviate the vulnerability issue of deep models. One
typical way is to improve the prediction accuracy in the case
of corrupted inputs ( Déniz-Suárez et al., 2020; Liao et al., 2018;
Xie et al., 2018 ). Alternatively, a trial to detect the adversar-
ial examples before feeding them into, say classification mod-
els, is also researched ( Metzen et al., 2017; Pang et al., 2018 ).
Besides these methods, the fuzzy gradient technique has ob-
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ained wide attention in existing literature ( Athalye et al.,
018; Papernot et al., 2016 ), which yields pleasing performance 
n the black-box attack case whereas showing limited robust- 
ess in the white-box attack case ( Guo et al., 2018; Liao et al.,
018; Xie et al., 2018; 2018 ). In this article, we focus on generat- 
ng more transferable adversarial samples against both black- 
ox and white-box defenses. 

. Preliminary 

efore presenting the proposed method, we first introduce 
he notations and the preliminary knowledge about the cur- 
ent work. Let x denote an image, y true denote the correspond- 
ng ground-truth label, θ denote the network parameters, and 

 (x, y true ; θ ) denote the loss function. To generate the adver- 
arial example, our goal is to maximize the loss function 

 (x, y true ; θ ) given x under the constraint that the generated ex- 
mple x adv = x + r should look visually similar to the original 
mage x and the corresponding predicted label y adv � = y true . In 

his work, we use l ∞ 

− norm to measure the perceptibility of 
dversarial perturbations, i.e., || r || ∞ 

≤ ε, where ε is the upper 
ound of perturbations allowed. The loss function is defined 

s 

 (x, y true ; θ ) = −1 y true · log (so ft max (l (x ; θ ))) , (1) 

here 1 y true is the one-hot encoding of the ground-truth y true 

nd (l(x ; θ ) is the logits output. 
Based on the above formulation, we introduce a series of 

ttack methods that inspire the proposed method. 
Fast Gradient Sign Method (FGSM) ( Goodfellow et al., 2015 ): 

GSM is a typical white-box attack algorithm that generates 
he adversarial perturbation by maximizing the loss function 

 (x adv , y true ; θ ) with a one-step update. The generated pertur- 
ation is added to the original input to produce the adversar- 

al example. The advantage is low computational cost and fast 
eneration speed, while the disadvantage is weak attack abil- 
ty. The update can be expressed as: 

 

adv = x + ε · sign (� x L (x, y true ; θ )) , (2) 

here sign (·) is a sign function to restrict the perturbation in 

he l ∞ 

−norm bound, and � x L is the gradient of the loss function
ith respect to x . 

Iterative Fast Gradient Sign Method (I-FGSM) ( Kurakin et al.,
017 ): I-FGSM extends FGSM to an iterative version by apply- 
ng FGSM in iterations with a small step size α. This method 

lleviates the issue of FGSM which states that one gradient 
pdate could not sufficiently reveal the potential risk of the 
odel, hence possibly failing to attack. The update schema of 

-FGSM is: 

 

adv 
t+1 = Clip εx 

{ 
x adv 

t + α · sign (� x L (x adv 
t , y true ; θ )) 

} 
, (3)

here x adv 
0 = x and Clip εx denotes the adversarial example 

lipped by the ε-ball of the original image x . 
Momentum Iterative Fast Gradient Sign Method (MI- 

GSM) ( Dong et al., 2018 ): MI-FGSM introduces a variety of 
omentum-based iterative algorithms to enhance the adver- 
arial attack capability by incorporating momentum into the 
terative attacking process. This method allows to compute 

ore and more accurate perturbation in iterations, resulting 
n enhanced attacking performance. The update procedure is 
ormalized as follows: 

 t+1 = μ · g t + 

� x L (x adv 
t , y true ; θ ) ∥∥∥� x L (x adv 

t , y true ; θ ) 
∥∥∥

1 

, (4) 

 

adv 
t+1 = Clip εx 

{ 
x adv 

t + α · sign (g t+1 ) 
} 
, (5) 

here g t is the accumulated gradient at iteration t and μ is the 
ecay factor. 

. Methods 

n this section, we introduce the proposed adaptive ensemble 
odel in detail, with the variations of manual and dynamical 

daptivity. 

.1. Framework of ensembleFool 

he resistant ability to adversarial attacks varies across differ- 
nt deep models. In the case of fusing multiple models, differ- 
nt models should provide different contributions to the final 
dversarial perturbation, instead of the same contribution like 
I-FGSM. This is inspired by the investigation of Fig. 2 which 

epicts the diversity of different models. Hence, we develop 

he EnsembleFool framework, as shown in Fig. 3 . Different 
rom MI-FGSM, we consider that each of the models should 

e adapted according to certain strategies such that the gen- 
rated perturbation could maximize the vulnerability of all 
odels. This is implemented via the weight w k ∈ [1 , k ] as il-

ustrated in the step 2 of Fig. 3 , where K is the number of the
odels involved. Then, the fusion process is conducted on the 

ogit layers, yielding a final logit expression which is written 

s: 

(x adv 
t ) = 

∑ K 
k =1 w k · l k (x 

adv 
t ) ∑ K 

k =1 w k 

, (6) 

here l k (x ) are the logit of the k -th model, and w k is the weight
f the k -th model. The loss function L (x, y ) is defined as the
oftmax cross-entropy loss: 

 (x adv 
t , y true ) = −1 y true ·log (so ftmax (l(x adv 

t ))) , (7) 

here 1 y is the one-hot encoding of label y . Based on this
ramework, the setting of the weights is the key to the suc- 
ess of the improvement, which is elaborated in the following 
ections. 

.2. EnsembleFool with forced adaptivity 

n the iterative attacking scenario, the adversarial perturba- 
ion is obtained by cumulatively exploiting the properties of 
he attacked model. In this regard, the attacking result in each 
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Fig. 3 – The framework of our proposed fusing strategy for adversarial attack. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

iteration could provide valuable cues for updating the pertur-
bation in the next iteration. Intuitively, in a certain iteration,
if the perturbed input successfully attacks the model, the per-
turbation is viewed as a useful one, and otherwise, as a useless
one. This inspires us to develop a forced adaptivity scheme
by utilizing the attacking results in each iteration. Specifically,
the results have two cases: successful and unsuccessful at-
tacks. The successful attack informs us that the logit should
have a lower contribution to the perturbation generation since
this model has already been attacked. By contrast, the unsuc-
cessful attack implies a higher contribution, conveying that
this model should focus more on the next iteration. As such,
we assign the model successfully attacked with a lower w k = δl 

and the model unsuccessfully attacked with a higher w k = δh .
In this way, the whole process would pay more and more at-
tention to the models that have not been attacked success-
fully, thus maximizing all models’ vulnerability. In detail, δl is
fixed to be 1 and δh is fixed to be greater than 1, where the val-
ues are manually specified, hence implying the name forced
adaptivity (EnsembleFool-C). In the initial iteration, all weights
w i are set to 1. Here, one may argue that when a certain model
has already been attacked successfully, this model could pro-
vide nothing more information in the following iterations. In
fact, we keep the minimal value of w i greater than 0, such that
the contribution of each model could be remembered consis-
tently and the contributions of different models could have a
stable balance, ensuring the improvement of performance. 

4.3. EnsembleFool with dynamical adaptivity 

The above-mentioned forced adaptivity imposes adaptive
weights to different models, whereas the weights are prede-
fined, which could be viewed as discretized adaptivity. Step-
ping from the discretised version to a continuous version, we
obtain a more flexible fusion procedure, which is named as
dynamical adaptivity. Consider that the output probability of
a model tells how confident the model is about the input.
Hence, the probability is naturally a choice of the weight set-
ting. While the model has higher confidence on the correct
label, the model is not yet attacked successfully, implying a
higher weight value in next iteration; instead, while the model
has lower confidence on the correct label, the model is proba-
bly attacked successfully, implying a lower weight value. This
is consistent with the intuition mentioned in the forced adap-
tivity. As shown in Fig. 4 , the dynamic adaptivity estimates the
probabilities of all models with respect to the input, where the
probabilities are multiplied with the corresponding logits fol-
lowed by a summation to obtain a cumulative logit, which can
be observed from the blue box. In this way, the weights of dif-
ferent models can be adjusted adaptively in each iteration of
the attack. 

Mathematically, the above fusion process can be expressed
as: 

l(x adv 
t ) = 

∑ K 
k =1 p k (x 

adv 
t , y true ) · l k (x 

adv 
t ) ∑ K 

k =1 p k ( x 
adv 
t , y true ) 

, (8)

where y true means the ground-truth label of x , and p k (x, y ) are
the prediction of the label y for x by the k -th model. 

We present the proposed EnsembleFool algorithm with dy-
namical adaptivity(EnsembleFool-A) in Algorithm 1 . As in the
forced adaptivity, We initialize the weights of all models to 1.
In the following iterations, the weights are set according to the
ground-truth label probabilities, predicted by the models. 

5. Experiments 

In this section, we conduct a series of experiments on public
datasets to validate the effectiveness of the proposed method
by comparing it with the state-of-the-arts. 

5.1. Experimental settings 

Dataset: To construct the attack dataset, we randomly choose
1000 images belonging to the 1000 categories from the ILSVRC
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Fig. 4 – The process of adjusting the weight of adaptive selection method(EnsembleFool-A). 

Algorithm 1 EnsembleFool-A. 

Input: K classifiers f 1 , f 2 , . . . , f k , its logits l 1 , l 2 , . . . l k and predic- 
tions p 1 , p 2 , . . . p k ; a real example x with ground-truth label 
y true . 

Input: Perturbation size ε; iterations T and decay factor μ. 
Output: An adversarial example x adv .
1: α = ε/T 
2: g 0 = 0 ; x adv 

0 = x ; 
3: for all t = 0 → T − 1 do 
4: w i = 1 , ∀ i ∈ [1 , K] 
5: for all k = 1 → K do 
6: Get the logit by l k (x 

adv 
t ) ; 

7: Get the prediction by p k (x 
adv 
t , y true ) ; 

8: end for 
9: Fuse the logits as Eq. 7; 

10: Get softmax cross-entropy loss as Eq. 8; 
11: Get the gradient � x J(x adv 

t , y true ) 
12: Update g t+1 by Eq. 4; 
13: Update x adv 

t+1 by Eq. 5; 
14: end for 
15: return x adv = x adv 
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M
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012 validation set ( Russakovsky et al., 2015 ), which are cor- 
ectly classified by all the testing models as specified in 

ection 5.2 . All the images are resized to 299x299x3 before- 
and. 

Competitors: The proposed method follows the framework 
f I-FGSM and MI-FGSM, which are selected as the baselines 
or fair comparison. Besides, to show the effectiveness, we em- 
loy three advanced defence models, including high-level rep- 
esentation guided denoiser (HGD) ( Liao et al., 2018 ), random 

esizing and padding (R&P) ( Xie et al., 2018 ), and NIPS-r3 1 . 
Platform: All the experiments are conducted on a GPU 

erver with one Intel Xeon E5 2620 v4 CPU, 128GB RAM, and 

wo NVIDIA RTX 2080 TI GPUs. The software environment is 
nder CentOS 7, Python 3.6, and Tensorflow-GPU 1.13.1. 

Metrics: We use the attack success rate and score to com- 
are the performance of different methods. Success rate is an 

ssential metric in the adversarial attack, which is calculated 
1 https://github.com/anlthms/nips-2017/tree/master/mmd 

t  

I
r

y dividing the number of misclassified adversarial examples 
y the total number of examples. Attack Score is an excellent 
ay to evaluate the success rate of attack and the perturba- 

ion size. While there is a trade-off between the success rate 
f attack and the perturbation size, our method could yield a 
oticeable improvement on both metrics. For each generated 

dversarial example, multiple defense models are used to pre- 
ict the example, and the corresponding perturbation amount 
ettles according to the recognition result. The formulation is: 

 (x, x adv ) = 

{ 

up limit f (x a ) = y 
mean (|| x − x adv || ) f (x adv ) � = y, 

(9) 

here up limt denotes the upper limit. If the defense model cor- 
ectly identifies the example, the attack is unsuccessful, and 

he perturbation amount is set to the upper limit up limit di- 
ectly. If the attack is successful, we use the average l 2 distance 
o calculate the perturbation of the adversarial example rela- 
ive to the original example. For n adversarial examples, we 
nally calculate the average of all perturbation amounts un- 
er the defense model, as the dist score, which is calculated 

s: 

ist _ score (A ) = 

1 
n 

n ∑ 

i =1 

·D (x i , x 
adv 
i ) . (10) 

here A denotes the defense model A . To make a fair com-
arison, we convert the dist score to the attack score which is 
anging from 0 to 100. The conversion is: 

t t ack _ score = 

1 
m 

m ∑ 

i =1 

( 
up limt − Dist _ score (i ) 

up limit 
∗ 100) . (11) 

here m denotes the number of the defense models. 

.2. Model settings 

odels: To implement the mutil-model architecture, we con- 
ider six different models. Three of them are normally 
rained models: Inception-v3 (Inc-v3) ( Szegedy et al., 2016 ),
nception-v4 (Inc-v4) ( Szegedy et al., 2017 ), and Inception- 
esnet-v2 (IncRes-v2) ( Szegedy et al., 2017 ). The other three 

https://github.com/anlthms/nips-2017/tree/master/mmd
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Table 1 – Black-box attack success rate (%) of 
EnsembelFool-C using different weights . 

δh Inc-v3 Inc-v4 IncRes-v2 
Inc- 
v3 ens 3 

Inc- 
v3 ens 4 

IncRes- 
v2 ens 

1 77.5 72.9 69.3 25.2 32.3 20.7 
2 78.1 72.9 69.3 25.9 33.3 20.8 
3 78.5 73.4 69.7 25.6 33.7 20.8 
4 78.6 73.9 69.4 26.6 33.3 20.8 
5 78.3 73.5 69.4 26.1 33.5 20.4 
6 78.3 73.4 69.4 25.8 33.5 20.1 
7 77.8 73.3 69.3 25.7 32.0 20.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 – White-box attack success rate (%) of 
EnsembleFool-C using different weights. 

δh Inc-v3 Inc-v4 
IncRes- 
v2 Inc-v3 ens 3 

Inc- 
v3 ens 4 

IncRes- 
v2 ens 

1 99.5 98.1 96.1 100 100 97.0 
2 99.7 98.7 97.3 99.9 100 97.6 
3 99.7 98.7 97.3 100 100 98.7 
4 99.7 98.8 97.5 99.9 100 98.0 
5 99.7 98.7 97.5 99.9 100 97.7 
6 97.7 99.8 97.5 99.8 100 97.6 
7 99.6 98.8 97.5 99.8 100 97.6 

Table 3 – Ensemble attack success rate (%).The ensemble 
column represents the white-box attack case that adver- 
sarial examples are generated by six model ensemble at- 
tacks tested on the corresponding models. The hold-out 
column means the black-box attack case that adversarial 
examples are produced by five model ensemble attacks 
and tested on the hold-out model. 

Model Attack method Ensemble Hold-out 

Inc- 
v3 

I-FGSM 99.6 52.3 
MI-FGSM 99.5 77.5 
EnsembleFool-C( Ours ) 99.7 78.6 
EnsembleFool-A( Ours ) 99.7 81.9 

Inc- 
v4 

I-FGSM 98.5 40.7 
MI-FGSM 98.1 72.9 
EnsembleFool-C( Ours ) 98.8 73.9 
EnsembleFool-A( Ours ) 99.3 76.8 

IncRes- 
v2 

I-FGSM 96.1 37.1 
MI-FGSM 96.1 69.3 
EnsembleFool-C( Ours ) 97.5 69.4 
EnsembleFool-A( Ours ) 99.5 73.4 

Inc- 
v3 ens 3 

I-FGSM 99.8 14.7 
MI-FGSM 100 25.2 
EnsembleFool-C( Ours ) 99.9 26.6 
EnsembleFool-A( Ours ) 99.9 27.3 

Inc- 
v3 ens 4 

I-FGSM 99.9 19.1 
MI-FGSM 100 32.3 
EnsembleFool-C( Ours ) 100 32.3 
EnsembleFool-A( Ours ) 99.8 34.3 

IncRes- 
v2 ens 

I-FGSM 97.4 12.4 
MI-FGSM 97.0 20.7 
EnsembleFool-C( Ours ) 98.0 20.8 
EnsembleFool-A( Ours ) 99.2 21.2 

 

 

 

 

 

 

 

 

 

are adversarially trained models: Ens3-adv-inception-v3(Inc-
v3 ens 3 ) ( Tramèr et al., 2018 ), Ens4-adv-inception-v3(Inc-v3 ens 4 )
( Tramèr et al., 2018 ), and Ens-adv-inception-resnet-v2(IncRes-
v2 ens ) ( Tramèr et al., 2018 ). All these models are publicly avail-
able from the Tensorflow’s Github repository. Github 2 . 

Hyper-parameters Settings: Following the settings of MI-
FGSM ( Dong et al., 2018 ), we set the maximum perturbation
ε to 16, where the pixel range of all images to [0,255], the
step size α to 1.6, and the number of iterations T to 10. In
EnsembleFool-C, and EnsembleFool-A, we adopt the decay fac-
tor μ as 1.0. 

5.3. Ablation study 

5.3.1. Investigation on model weights 
The forced adaptivity reminds us the task of manually assign-
ing the weights to successfully and unsuccessfully attacked
models. As described in Section 4.3 , the weights play an im-
portant role in improving the performance of the model fu-
sion, which are investigated here. Specifically, the weight val-
ues for successfully attacked models are fixed to 1, as men-
tioned in previous sections. We change the weight values for
unsuccessfully attacked models from 1 to 7, and examine the
performance of each case. The experiments are conducted for
both black-box and white-box attacks. In the black-box attack,
the adversarial examples are generated by the ensemble five
networks and tested on the hold-out model. In the white-box
attack, the adversarial examples are generated by integrating
six networks and testing on the model within the ensemble
model. 

The result for the black-box and white-box attacks are
persented in Table 1 and Table 2 , respectively. We can see that
when δh = 4 , the attack performance is the best in both cases.

5.4. Comparison with the baseline methods: 

5.4.1. Comparison of attack success rate 
In this section, we compare the attack success rate of the pro-
posed EnsembleFool-C and EnsembleFool-A with the baseline
attack methods in both white-box and black-box attacks. As
shown in Table 3 , we observe that in the white-box attack, the
proposed methods perform better than the competitors. For
2 https://github.com/tensorflow/models/tree/master/research/ 
slim/nets 

 

 

example, in Incres-v2, the success rate of I-FGSM and MI-FGSM
both reach 96.1%, while that of EnsembleFool-A achieves
99.5%. A noticeable improvement by the proposed methods
can be observed from the black-box attack. The performance
of EnsembleFool-C is pleasing, and more importantly, in al-
most all cases, the attack success rate of EnsembleFool-A is
about 10% higher than that of I-FGSM, and is 2%-4% higher
than that of MI-FGSM. This validates the effectiveness of the
proposed adaptive schemes, including forced and dynamical
adaptivity. 

5.4.2. Comparison of attack score 
We explore the effect of the proposed attack strategies under
different upper limits, where the results are shown in Table 4

https://github.com/tensorflow/models/tree/master/research/slim/nets
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Fig. 5 – The top 5 confident predictions of the examples by different methods. 

Fig. 6 – Attack success rates (%) on various numbers of iterations against advanced defence models. 
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Table 4 – Ensemble attack score when up limit = 32 . The en- 
semble column represents the white-box attack case and 

the hold-out column means the black-box attack case. 

Model Attack method Ensemble Hold-out 

Inc-v3 MI-FGSM 40.05 31.09 
EnsembleFool-C( Ours ) 40.12 31.51 
EnsembleFool-A( Ours ) 40.06 32.81 

Inc-v4 MI-FGSM 39.49 29.24 
EnsembleFool-C( Ours ) 39.76 29.77 
EnsembleFool-A( Ours ) 39.90 30.77 

IncRes-v2 MI-FGSM 38.65 27.80 
EnsembleFool-C( Ours ) 39.18 27.96 
EnsembleFool-A( Ours ) 39.97 29.23 

Inc-v3 ens 3 MI-FGSM 40.24 10.12 
EnsembleFool-C( Ours ) 40.20 10.68 
EnsembleFool-A( Ours ) 40.15 10.88 

Inc-v3 ens 4 MI-FGSM 40.24 12.84 
EnsembleFool-C( Ours ) 40.24 13.24 
EnsembleFool-A( Ours ) 40.11 13.67 

IncRes-v2 ens MI-FGSM 39.02 8.27 
EnsembleFool-C( Ours ) 39.41 8.33 
EnsembleFool-A( Ours ) 39.86 8.59 

Table 5 – Ensemble attack score when up limit = 64. The en- 
semble column represents the white-box attack case and 

the hold-out column means the black-box attack case. 

models Attack method Ensemble Hold-out 

Inc-v3 MI-FGSM 69.77 54.55 
EnsembleFool-C 69.91 55.05 
EnsembleFool-A 69.88 57.36 

Inc-v4 MI-FGSM 68.80 51.07 
EnsembleFool-C 69.28 51.84 
EnsembleFool-A 69.60 53.78 

IncRes-v2 MI-FGSM 67.38 48.55 
EnsembleFool-C 68.34 48.68 
EnsembleFool-A 69.73 51.32 

Inc-v3 ens 3 MI-FGSM 70.12 17.66 
EnsembleFool-C 70.05 18.64 
EnsembleFool-A 70.03 19.09 

Inc-v3 ens 4 MI-FGSM 70.12 22.57 
EnsembleFool-C 70.12 23.27 
EnsembleFool-A 69.95 23.99 

IncRes-v2 ens MI-FGSM 68.01 14.49 
EnsembleFool-C 68.70 14.57 
EnsembleFool-A 69.53 14.89 

 

 

 

 

 

 

 

 

 

 

 

Table 6 – Ensemble attack success rate(%) on advanced 

defence models. 

Attack method HGD R&P NIPS-r3 

MI-FGSM 23.5 19.9 26.4 
EnsembleFool-C( Ours ) 27.6 22.1 29.3 
EnsembleFool-A( Ours ) 29.1 23.4 30.0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and Table 5 . I-FGSM is ignored in this experiment because
of its limited performance compared with MI-FGSM. The re-
sults demonstrate the superiority of the EnsembleFool meth-
ods compared with MI-FGSM in either cases. 

5.4.3. Exemplar top-5 predictions 
We employ an integrated model to predict the top-5 classes
for a clean image and the images generated by MI-FGSM,
EnsembleFool-C and EnsembleFool-A. Fig. 5 visualizes the pre-
dictions which show the difference of preference between the
models. This validates the necessity of using flexible adjust-
ment of model weights. Notably, the image corrupted by En-
sembleFool has a low probability of the ground-truth label
(Blenheim spaniel), and especially, we cannot find the ground-
truth label in the top-5 possibilities by EnsembleFool-A. 
5.5. Performance on attack defence model 

To further evaluate the effectiveness of our attack method,
we conduct experiments on attacking the advanced defence
models. For fair comparison, we employ three adversari-
ally training models including HGD, R&P, and NIPS-r3. As
shown in Table 6 , it is seen that the attack success rates of
EnsembleFool-A and EnsembleFool-C are superior to that of
MI-FGSM in each of the three advanced defence models. To be
precise, EnsembleFool-A outperforms the baseline attacks by
13%-23%. 

We further compare EnsembleFool and MI-FGSM by using
different numbers of attacking iterations ranging from 2 to 20.
As shown in Fig. 6 , it can be seen that the attack success rates
of EnsembleFools (EnsembleFool-A and EnsembleFool-C) are
higher than that of MI-FGSM with the same iteration num-
ber. In other words, EnsembleFool can achieve the same attack
success rate as MI-FGSM with a fewer number of iterations. 

6. Conclusions 

Different deep models exhibit different characteristics of vul-
nerability when being attacked. Exploring this property would
help to generate more powerful adversarial examples. Start-
ing from this, in this paper, we propose a novel adaptive
ensemble-based adversarial attack method that employs an
adaptive strategy to fuse the information of multiple mod-
els. Specifically, the model prediction reveals whether correct
or confident the model is with respect to the input. This fact
informs us to use the model output as a guideline to adjust
the weights of different models in fusion, resulting in two
strategies: forced adaptivity and dynamical adaptivity. Com-
pared with the existing gradient-based attack methods, the
proposed method obtains noticeably improved attack success
rates in black-box and white-box attacks. Moreover, the exper-
iments of attacking defense methods validate the effective-
ness of the proposed strategies. 
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