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Abstract. Extensive studies have demonstrated that deep neural net-
works (DNNs) are vulnerable to adversarial attacks. Despite the signifi-
cant progress in the attack success rate that has been made recently, the
adversarial noise generated by most of the existing attack methods is
still too conspicuous to the human eyes and proved to be easily detected
by defense mechanisms. Resulting that these malicious examples cannot
contribute to exploring the vulnerabilities of existing DNNs sufficiently.
Thus, to better reveal the defects of DNNs and further help enhance their
robustness under noise-limited situations, a new inconspicuous adversar-
ial examples generation method is exactly needed to be proposed. To
bridge this gap, we propose a novel Normalize Flow-based end-to-end
attack framework, called AFLOW, to synthesize imperceptible adversar-
ial examples under strict constraints. Specifically, rather than the noise-
adding manner, AFLOW directly perturbs the hidden representation of
the corresponding image to craft the desired adversarial examples. Com-
pared with existing methods, extensive experiments on three benchmark
datasets show that the adversarial examples built by AFLOW exhibit
superiority in imperceptibility, image quality and attack capability. Even
on robust models, AFLOW can still achieve higher attack results than
previous methods.

Keywords: Adversarial Attack · Adversarial Example · Normalize
Flow · AI Security · Imperceptible Adversarial Attack

1 Introduction

Deep Neural Networks (DNNs) have shown their excellent performance in a
wide variety of deep learning tasks, such as Computer Vision (CV) [36], Natural
Language Processing (NLP) [40], and Autonomous Driving [18]. However, the
DNNs have been demonstrated to be vulnerable to adversarial examples [35],
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Fig. 1. The original images and the adversar-
ial examples generated by PGD [28], stAdv
[41], Chroma-Shift [1] and the proposed
AFLOW for the ResNet-152 [15] model.

especially in CV, which usually build
by adding elaborate well-designed
noise to the original clean image.
Typically, the adversarial examples
should have the following two char-
acteristics: One is the attack abil-
ity, which means that the adversar-
ial examples can fool the well-trained
DNN models to output the wrong
predictions; the other is the imper-
ceptibility, which means the added
noise is unnoticeable to human eyes.

Recently, researchers have car-
ried out many studies on adversar-
ial examples, including adversarial
attack approaches and their corre-
sponding defense techniques. In CV,
existing attack methods usually gen-
erate adversarial examples by optimizing noise and adding them to the benign
image [4,13,16,17,29], and achieved admirable attack ability. However, these
methods ignore another critical characteristic, which constrains the perturba-
tion of a liberal policy. Most methods only consider the Lp-norm as a condition
to ensure that the perturbation is unnoticeable, e.g., Linf = {8, 16, 32, 64}, which
is the max difference value between the clean image and evil image. While the
Lp-norm is not enough to preserve the vivid details of the generated adversarial
examples, resulting in apparent adversarial noise. Some pioneer works make a
step forward on inconspicuous attacks, like stAdv [41], Chroma-Shift [1], and
FIA [25] build evil examples by spatial transform techniques or by manipulating
the image in the frequency level rather than in a noise-adding way. However,
the generated evil image still carries many burrs; thus, it can be easily detected
[3,21,22,24], which is infaust for further study of the susceptibility of DNNs and
improving the existing DNNs’ robustness.

Notably, rare research has been proposed to explore the vulnerability and
robustness of DNNs for adversarial examples built under rigorous constraints.
In this regard, designing a method to generate more inconspicuous adversarial
examples under strict constraints is essential to AI applications. It can make a
huge step forward in sufficiently exploring the fragility and guiding the robust-
ness improvement of the existing DNNs. In addition, the crafted adversarial
noise should be more invisible and challenging to be detected by the defense
mechanism.

To bridge this gap, in this paper, we intend to generate adversarial exam-
ples in the rigorous noise-limited scenario to explore the vulnerability of existing
DNNs. The noise-limited setting means that the Linf -norm of the generated
adversarial perturbation is strictly restricted, which is beneficial to improve the
imperceptibility of calculated adversarial perturbations and preserve the image
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quality of the generated adversarial examples as well. In order to balance the
invisibility and the attack ability of the generated adversarial examples, a novel
Normalize Flow (NF) model [43] based attack method called AFLOW, has been
proposed to deal with the issues mentioned above. Benefiting from the splendid
reconstruction capability of the NF model, we can generate adversarial exam-
ples by slightly disturbing the hidden space of the clean images. Specifically, the
AFLOW first input the clean image x into the well-trained NF model to obtain
its hidden representation z0. Next, we regard the z0 as the initial point and
optimize it to zt until it has reversed xt can attack the target model success-
fully. Empirically, the proposed AFLOW can significantly preserve the generated
adversarial examples’ image quality while achieving an admirable attack success
rate.

We conduct extensive experiments on three different computer vision bench-
mark datasets. In strict noise-limited scenarios, empirical results show that the
AFLOW can craft adversarial examples with better invisibility and excellent
image quality while achieving a remarkable attack performance. As shown in
Fig. 1, comparing with the existing methods, such as PGD [28], stAdv [41], and
Chroma-Shift [1], the adversarial examples generated by AFLOW is indistin-
guishable from the original images. The main contributions of this work could
be summarized as follows:

– We tried to improve the detection resistance and attack performance under
rigorous noise-limited settings due to the adversarial examples crafted by
existing attack methods that can be easily detected by adversarial detectors.
Moreover, in this situation, the attack performance of existing methods have
been faded significantly.

– we design a novel end-to-end scheme called AFLOW to craft adversarial
examples for noise-limited settings by directly disturbing the latent repre-
sentation of the clean examples rather than noise-adding. This method can
generate adversarial examples with high attack performance and impercepti-
bility.

– We conduct comprehensive experiments on three real-world datasets, and
the results demonstrate the superiority of AFLOW in synthesizing adversarial
examples under noise-limited attack settings. Compared to existing baselines,
the adversarial examples built by AFLOW have high attack ability, outstand-
ing invisibility and excellent image quality. Notably, AFLOW achieves up to
96.73% ASR under the constraint is Linf = 1 on the ImageNet dataset.

The rest of this paper is organized as follows. We first briefly review the
methods relating to imperceptible adversarial attacks in Sect. 2. Then, Sect. 3
introduces the details of the proposed AFLOW framework. Finally, the experi-
ments are presented in Sect. 4, with the conclusion drawn in Sect. 5.
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2 Related Work

In this section, we briefly review the most pertinent attack methods to the
proposed work. The adversarial attacks and the techniques used for crafting
inconspicuous adversarial perturbations.

2.1 Adversarial Attack

The adversarial attack has already been intensely investigated in recent years.
Szegedy et al. demonstrated that it was possible to mislead the deep neural net-
works (DNNs) by adding imperceptible and well-designed perturbations to the
original benign input image. They simplified the problem of generating adver-
sarial examples by disturbing the loss function by a small margin, which was
then solved by L-BFGS [35]. Goodfellow et al. proposed an effective un-targeted
attack method called Fast Gradient Sign Method (FGSM) [13], which generated
adversarial examples under the L∞ norm limit of the perturbation. Kurakin et al.
proposed the BIM [19], which executed FGSM iteratively with a small update
step in each epoch, to ensure that the update direction of gradients could be
more accurate. Projected gradient descent (PGD) [28] could be regarded as a
generalized version of BIM. Inspired by momentum, Dong et al. [10] proposed
Momentum Iterative FGSM (MI-FGSM), which integrated momentum into the
iterative BIM process. Like L-BFGS, Carlini and Wagner proposed a set of opti-
mized adversarial attack C&W [2] to craft adversarial examples under the limit
of L0, L2, and L∞ norm.

2.2 Imperceptible Adversarial Attacks

Unlike the previous methods, which synthesize adversarial examples by adding
noise and then clipping the adversarial examples use Lp-norm based metrics
to ensure the adversarial examples’ invisibility. Xiao et al. propose a spatial
transform-based (flow field) method, stAdv [41], to generate adversarial exam-
ples. This approach is based on altering the pixel positions rather than modify-
ing the pixel value and brings a booming prospect that the DNNs can be fooled
only by pixel shifts and make a step forward to explore vulnerability more deeply.
Chroma-shift [1], which calculates the flow field in the image’s YUV space rather
than RGB space, make another step forward to fabricate adversarial examples
with higher human imperceptibility. Besides, Adv Cam [12] adopt style transfer
techniques to generate adversarial images more natural for the physical world.

The most related method to the current work is AdvFlow [9], which uses the
Normalizing Flow model to map the input image to a hidden representation z.
And then adding an optimized noise μ to z to generate the representation of the
corresponding adversarial example. Note that AdvFlow is designed for black-box
settings and generates adversarial examples in a noise-adding and limitation way,
which requires many queries to perform a successful attack.

Therefore, generating inconspicuous adversarial examples poses the request
for a method that can craft adversarial examples with strong attack ability,
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high imperceptibility, and high image quality. Besides, the attack strategy must
be direct, efficient, and effective to perform attacks for different models and
datasets. To achieve this goal, we know from the previous studies that the Nor-
malize Flow model can transform an image between pixel space and hidden
space. Besides, disturbing images in their hidden representations can convert to
an adversarial example at the pixel level. This could help us to explore exist-
ing models’ vulnerabilities under rigour noise constraints. Hence, we are well
motivated to develop a Normalize Flow-based scheme to generate adversarial
examples with better human visual perception.

3 Methodology

In this section, we propose our attack method. First, we take an overview of our
method. Next, we go over the detail of each part step by step. Finally, we discuss
our objective function and summarize the whole process as Algorithm 1.

3.1 Overview

The proposed AFLOW attack framework can be divided into three parts, the
first one is to map clean image x to its latent space z, which we are going to
make changes, and the second part is to disturb z to zT in an iterative manner;
the last one is doing the inverse operation to translate zT to its corresponding
RGB space counterpart, that is, the candidate adversarial example XT until it
can fool the target DNN model to make wrong decisions. The whole process is
shown in Fig. 2.

3.2 Problem Statement

Given a well-trained DNN classifier C and a correctly classified input (x, y) ∼ D,
we have C(x) = y, where D denotes the accessible dataset. The adversarial
example xadv is a neighbor of x and satisfies that C(xadv) �= y and ‖xadv − x‖p ≤
ε, where the Lp norm is used as the metric function and ε is usually a small
noise budget. With this definition, the problem of finding an adversarial example
becomes a constrained optimization problem:

xadv =

⎧
⎪⎨

⎪⎩

arg max L
‖xadv−x‖p≤ε

(C(xadv) �= y), un − targeted

arg min L
‖xadv−x‖p≤ε

(C(xadv) = t), targeted
(1)

where L stands for a loss function that measures the confidence of the model
outputs, and t is the target label.
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Fig. 2. The framework of proposed AFLOW. X represent the image, among them,
X0 is the benign image, XT is the intermediate results and Xadv is the corresponding
adversarial counterpart; Z is the hidden representation of the image; among them, the
Z0 is the benign hidden value, Z1 ∼ ZT are the intermediate results, and the Zadv is
the adversarial hidden value; A represents the adversarial space and B is the benign
space; F is the well-trained Normalize Flow model and C is the pre-trained classifier.

3.3 Normalizing Flow

Normalizing Flows (NF) [43] are a class of probabilistic generative models, which
are constructed based on a series of completely reversible components. The
reversible property allows to transform from the original distribution to a new
one and vice versa. By optimizing the model, a simple distribution (such as the
Gaussian distribution) can be transformed into a complex distribution of real
data. The training process of normalizing flows is indeed an explicit likelihood
maximization. Considering that the model is expressed by a fully invertible and
differentiable function that transfers a random vector z from the Gaussian dis-
tribution to another vector x, we can employ such a model to generate high
dimensional and complex data.

Specifically, given a reversible function f : Rd → R
d and two random vari-

ables z ∼ p(z) and z′ ∼ p(z′) where z′ = f(z), the change of variable rule tells
that

p(z′) = p(z)
∣
∣
∣
∣det

∂f−1

∂z′

∣
∣
∣
∣ , p(z) = p(z′)

∣
∣
∣
∣det

∂f

∂z

∣
∣
∣
∣ (2)

where det denotes the determinant operation. The above equation follows a
chaining rule, in which a series of invertible mappings can be chained to approx-
imate a sufficiently complex distribution, i.e.,

zK = fK � ... � f2 � f1(z0), (3)

where each f is a reversible function called a flow step. Equation 3 is the short-
hand of fK(fk−1(...f1(x))). Assuming that x is the observed example and z is
the hidden representation, we write the generative process as

x = fθ(z), (4)
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where fθ is the accumulate sum of all f in Eq. 3. Based on the change-of-variables
theorem, we write the log-density function of x = zK as follows:

− log pK(zK) = − log p0(z0) −
K∑

k=1

log
∣
∣
∣
∣det

∂zk−1

∂zk

∣
∣
∣
∣ , (5)

where we use zk = fk(zk−1) implicitly. The training process of normalizing flow
minimizes the above function, which exactly maximizes the likelihood of the
observed training data. Hence, the optimization is stable and easy to implement.

Algorithm 1. Normalizing Flow-based Spatial Transform Attack
Input: Xtr: a batch of clean examples used for training; α: the learning rate; T : the

maximal training iterations; Q: the maximal querying number; ε: the noise budget;
Xte: a clean example used for test; C: the target model to be attacked.

Output: The adversarial example xadv is used for attack.
Parameter: The flow model fθ.
1: Initialize the parameters of the flow model fθ;
2: for i = 1 to T do
3: Optimize fθ according to Eq. 5;
4: if Convergence reached then
5: break;
6: end if
7: end for
8: Obtain optimized fθ;
9: Compute the hidden representation of examples in Xte via z = f−1(xte);

10: z
′
0 = z

11: for i = 1 to Q do
12: Optimize z

′
i via Eq. 6;

13: Compute the adversarial example candidate x
′
i via x′ = f(z

′
i);

14: Clip the example via Clip();

15: if Successfully attack C by x
′
i then

16: xadv = x
′
i

17: break.
18: end if
19: end for

3.4 Generation of Adversarial Examples

Given a well-trained flow model fθ and a normal input x, to generate an adver-
sarial example, we first calculate its corresponding latent space vector z by per-
forming a forward flow process via z = fθ(x). Once the z is calculated, we regard
z as the perturbation starting point of the latent adversarial z′, then directly
optimize it with the Adam optimizer, and finally restore the optimized z′ to the
image space through the inverse operation of the Normalizing Flow model, that



AFLOW 509

is x′ = fθ(z′), to get its perturbed example x′ in pixel level. We will repeat the
above process to optimize z′ until x′ becomes an eligible adversarial example.
For the fairness of comparison, we follow the existing attack methods which con-
strain the perturbation within a certain range. Once we obtain the adversarial
example candidate x′, we employ the clip function x′ = x′ +Clip(−ε, x′ −x, ε) to
ensure the imperceptible property of the perturbation, where ε is the acceptable
noise budget, in this paper, ε ∈ 1, 2, 4, 8.

3.5 Objective Functions

In order to take into account the attack success rate and visual invisibility of
the generated adversarial examples, which keeps it as similar as possible to the
benign image to ensure that it is imperceptible to human eyes. For adversarial
attacks, the goal is making C(Xadv) �= y, we give the objective function as:

⎧
⎨

⎩

Ladv(X, y) = max[C(Xadv)y − max
k �=y

C(Xadv)k, k], un − targeted

Ladv(X, y, t) = min[max
k=t

C(Xadv)k − C(Xadv)y, k], targeted
(6)

The whole algorithm of AFLOW is listed in Algorithm 1, which could help
readers to re-implement our method step-by-step.

4 Experiments

In this section, we evaluate the proposed AFLOW on three benchmark image
classification datasets. We first compare our proposed method with several base-
line techniques concerned with Attack Success Rate (ASR) on clean models and
robust models on three CV baseline datasets under strong constraints. Then,
we evaluate the anti-detection ability of the proposed and baseline methods.
Finally, we first provide a comparative experiment to the existing attack meth-
ods in image quality or similarity aspects with regard to LPIPS, DISTS, SSIM,
and PSNR et al. Through these experimental results, we show the superiority of
our method in attack ability, human perception, and image quality.

4.1 Settings

Dataset: We verify the performance of our method on three benchmark datasets
for the computer vision task, named Caltech-2561 [14], ImageNet-1k2 [7] and
Places3653 [45]. In detail, the Caltech256 dataset consists of 30,607 real-world
images of different sizes, spanning 257 classes (256 object classes and an addi-
tional clutter class). ImageNet-1K has 1,000 categories, containing about 1.3M

1 https://data.caltech.edu/records/nyy15-4j048.
2 https://image-net.org/.
3 http://places2.csail.mit.edu/index.html.

https://data.caltech.edu/records/nyy15-4j048
https://image-net.org/
http://places2.csail.mit.edu/index.html
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Table 1. Experimental results on the attack success rate of un-targeted attack on
dataset Caltech256 under linf noise budget is 1, 2, and 4, respectively.

Epsilon Model BIM PGD MIFGSM TIFGSM DIFGSM APGD Jitter AdvFlow AFLOW

1 VGG-19 31.35 35.64 40.72 2.93 26.66 27.66 16.89 0.58 82.81

ResNet-152 37.79 41.11 51.17 6.35 28.42 40.66 26.17 1.75 88.67

MobileNetV2 48.97 46.38 59.15 7.76 32.28 36.83 26.63 3.73 91.02

ShuffleNetV2 63.75 65.49 71.46 17.22 47.11 23.38 48.90 16.67 88.67

2 VGG-19 79.59 83.50 82.91 25.29 78.42 57.71 61.91 5.13 97.27

ResNet-152 87.01 87.30 86.50 30.18 77.83 73.14 66.86 11.28 98.83

MobileNetV2 88.74 93.68 89.73 38.33 86.92 67.72 68.01 21.64 99.22

ShuffleNetV2 93.89 93.00 94.13 36.43 85.19 31.84 69.02 33.08 97.27

4 VGG-19 97.46 99.12 97.65 75.29 97.95 66.70 86.41 32.82 99.61

ResNet-152 97.07 98.54 97.07 70.31 98.34 81.25 89.36 44.19 99.61

MobileNetV2 99.11 99.31 97.92 83.35 99.41 69.63 90.92 50.78 100.00

ShuffleNetV2 99.90 99.71 99.01 75.56 99.01 33.73 83.65 55.47 99.61

examples for training and 50,000 examples for validation. The places365 is com-
posed of 10 million images comprising 434 scene classes.

In particular, in this paper, we extend our attack on the whole images of
Caltech256. And for ImageNet-1K, we carry out our attack on its subset datasets
from the NIPS2017 Adversarial Learning Challenge, and we call it NIPS2017 in
the later chapters. Regarding the Places365 dataset, we use its val 256 subset
for all the experiments.

Table 2. Experimental results on the attack success rate of un-targeted attack on
dataset Places365 under linf noise budget is 1, 2, and 4, respectively.

Epsilon Model BIM PGD MIFGSM TIFGSM DIFGSM APGD Jitter AdvFlow AFLOW

1 VGG-19 41.43 44.59 52.29 8.15 32.20 12.98 17.99 9.3 98.05

ResNet-152 33.43 37.71 49.65 6.90 28.22 12.44 16.19 17.69 99.61

MobileNetV2 52.81 55.30 65.22 17.00 40.84 13.09 27.48 31.54 99.61

ShuffleNetV2 68.96 69.92 78.40 21.86 52.13 5.78 34.03 47.29 96.88

2 VGG-19 88.62 87.15 92.00 39.22 84.52 24.61 57.24 32.35 100.00

ResNet-152 82.60 84.49 87.46 33.23 74.75 23.44 51.83 62.02 99.61

MobileNetV2 92.59 92.44 92.94 53.97 87.92 23.99 58.07 54.62 100.00

ShuffleNetV2 95.21 95.01 94.74 46.35 88.71 10.67 58.96 55.47 100.00

4 VGG-19 98.91 99.51 99.03 82.01 99.12 27.15 84.77 71.09 100.00

ResNet-152 98.02 98.51 98.22 76.82 98.02 27.73 79.96 87.5 100.00

MobileNetV2 99.50 99.32 98.82 88.52 99.60 26.82 83.76 91.41 100.00

ShuffleNetV2 99.21 99.70 99.60 82.27 99.30 11.66 74.58 84.38 100.00

Models: For NIPS2017, we use the PyTorch pre-trained clean model VGG-19
[34], ResNet-152 [15], MobileNet-V2 [31] and ShuffleNet-V2 [26] as the victim
models. For Caltech256 and Places365, we utilize the transfer learning to train
the ImageNet pre-trained VGG-19, ResNet-152, MobileNet-V2 and ShuffleNet-
V2, with top-1 classification accuracy 93.65%, 98.43%, 96.21%, 73.85% on Cal-
tech256 and 96.63%, 98.64%, 79.71%, 65.89% on Places365, respectively.

And in terms of robust models, they are including Salman2020Do R50 [30],
Salman2020Do R18 [30], Engstrom2019Robustness [5] and Wong2020Fast [39].
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All the models we use are implemented in the robustbench toolbox4 [5] and the
models’ parameters are also provided in [5]. These models showed classification
accuracy of 83.60%, 77.80%, 77.40%, 62.60%, and 63.10% on NIPS2017, respec-
tively. For all these models, we chose their Linf version parameters due to we
mainly extend Linf attack in this paper.

Baselines: We have two kind of baselines in this work. The classical meth-
ods including BIM [19], PGD [28], MIFGSM [10], TIFGSM [11], DIFGSM [42],
APGD [6] and Jitter [32]. The experimental results of those methods are repro-
duced by the Torchattacks toolkit5 with default settings. The another is the
imperceptible methods, stAdv [41], Chroma-shift [1] and the AdvFlow [9]. The
codes used in here are provided by the corresponding authors.

All the experiments are conducted on a GPU server with 4 * Tesla A100 40
GB GPU, 2 * Xeon Glod 6112 CPU, and RAM 512 GB.

Table 3. Experimental results on the attack success rate of un-targeted attack on
dataset NIPS2017 under linf noise budget is 1, 2, and 4, respectively.

Epsilon Model BIM PGD MIFGSM TIFGSM DIFGSM APGD Jitter AdvFlow AFLOW

1 VGG-19 34.94 37.42 45.06 10.34 28.31 20.45 23.37 27.34 87.98

ResNet-152 25.64 26.38 37.50 5.72 17.48 20.02 16.84 17.76 86.97

MobileNetV2 41.8 43.17 51.25 11.50 30.98 22.21 21.30 29.96 93.97

ShuffleNetV2 54.34 53.06 65.86 13.09 40.40 13.37 23.19 41.15 96.73

2 VGG-19 82.13 83.26 85.84 31.35 75.17 47.42 56.18 54.30 98.764

ResNet-152 68.22 69.81 75.85 17.48 55.72 49.58 50.53 41.31 99.26

MobileNetV2 84.51 85.08 85.19 28.59 74.49 46.36 58.31 60.70 99.55

ShuffleNetV2 89.90 90.33 91.32 32.72 75.68 23.61 51.21 74.22 100

4 VGG-19 98.20 98.76 98.43 71.01 97.53 56.29 83.60 82.03 99.66

ResNet-152 93.75 95.34 95.13 50.32 93.01 66.95 84.42 77.43 99.79

MobileNetV2 97.84 98.86 97.72 68.91 98.29 53.30 84.62 89.84 99.87

ShuffleNetV2 98.44 98.86 98.72 67.99 97.30 25.75 71.55 92.97 100

4.2 Quantitative Comparison with the Existing Methods

In this subsection, we will evaluate the proposed AFLOW and the baselines BIM,
PGD, MI-FGSM, TI-FGSM [11], DI2-FGSM [42], APGD, Jitter, and AdvFlow
in ASR on Caltech256 and Places365 dataset and the whole NIPS2017 dataset.
We set the noise budget ε of AFLOW and the baseline methods as 1, 2, and
4, respectively, for Linf attack towards all the baseline methods under the non-
target attack settings and the target attack settings.

Table 1, 2, 3, and 4 show the ASR on Caltech256, Places365 and NIPS2017,
respectively. As can be seen, AFLOW can improve baseline methods’ per-
formance in most situations. Note that the proposed method can achieve an
admirable attack success rate in a demanding perturbation budget, like ε = 1.

4 https://github.com/RobustBench/robustbench.
5 https://github.com/Harry24k/adversarial-attacks-pytorch.

https://github.com/RobustBench/robustbench
https://github.com/Harry24k/adversarial-attacks-pytorch
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Table 4. Experimental results on the attack success rate of targeted attack on dataset
NIPS2017 under linf noise budget is 1, 2, and 4, respectively.

Epsilon Model BIM PGD MIFGSM TIFGSM DIFGSM APGD Jitter AdvFlow AFLOW

1 VGG-19 8.20 10.34 20.67 0.45 6.18 11.69 3.71 4.69 13.67

ResNet-152 6.78 9.64 20.13 0.21 2.97 11.23 1.91 3.51 17.58

MobileNetV2 14.35 19.13 39.41 0.68 9.34 20.16 3.42 5.34 39.06

ShuffleNetV2 20.34 20.91 41.68 0.43 5.97 21.64 5.55 7.16 41.41

2 VGG-19 67.53 83.82 53.37 7.98 57.3 59.87 6.52 9.62 70.7

ResNet-152 63.45 83.26 53.81 5.83 42.58 70.26 3.39 7.34 86.72

MobileNetV2 85.31 93.28 83.83 9.57 66.63 87.85 6.95 7.96 91.02

ShuffleNetV2 82.79 88.05 85.78 4.98 59.74 53.69 11.66 10.18 93.36

4 VGG-19 95.51 99.44 76.07 56.52 96.07 98.65 9.44 23.56 98.83

ResNet-152 95.13 99.26 74.79 49.36 93.54 95.68 6.14 20.67 100

MobileNetV2 98.75 99.89 94.31 71.07 98.18 98.48 11.16 24.25 99.61

ShuffleNetV2 99.29 99.72 98.01 52.20 98.29 99.36 18.63 29.31 100

In contrast, other methods only get a relatively low attack success rate; take
the non-target attack on NIPS2017 as an example. The BIM, PGD, MI-FGSM,
TI-FGSM, DI2-FGSM, APGD, and AdvFlow can only achieve 25.64%, 26.38%,
37.50%, 5.72%, 17.48%, 20.02%, 16.84%, 17.76% attack success rate on ResNet-
152, respectively, vice versa, our AFLOW can achieve 86.79% attack success
rate. It is indicated that although these methods show fantastic attack perfor-
mance in large noise budget settings, once we put a relatively extreme limit on
the perturbation budget, these methods will lose their advantages completely
and show dissatisfactory results. On the contrary, the AFLOW can attack the
DNNs with smaller perturbations, in this setting, the adversarial examples gen-
erated by AFLOW are much less likely to be detected or denoised, so they are
more threatening to DNNs and meaningful for exploring the existing DNNs’
vulnerability and guiding the new DNNs’ designing.

4.3 Attack on Defense Models

Next, we investigate the performance of the proposed method in attacking robust
image classifiers. Thus we select some of the most recent defense techniques
that are from the robustness toolbox as follows, Engstrom2019Robustness [5],
Salman2020Do R18 [30], Salman2020Do R50 [30] and Wong2020Fast [39]. We
compare our proposed method with the baseline methods.

Following the results shown in Table 5, we derive that AFLOW exhibits the
best performance of all the baseline methods in terms of the attack success rate.
Especially in a lower noise budget, like ε = 1 or ε = 2, the baseline methods
range from 6.72% to 27.31% attack success rate on the Engstrom2019Robustness
model. However, the AFLOW can obtain a higher performance range from
15.21% to 28.41%. It demonstrates the superiority of our method when attacking
robust models.
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Table 5. Experimental results on the attack success rate of un-targeted attack on
dataset NIPS2017 to robust models under linf noise budget is 1, 2, and 4, respectively.

Epsilon Methods BIM PGD MIFGSM TIFGSM DIFGSM APGD Jitter AdvFlow AFLOW

1 Engstrom2019Robustness 10.85 10.85 10.85 6.72 8.40 11.24 13.70 10.48 15.21

Salman2020Do R18 12.36 12.36 12.36 8.78 10.62 12.52 15.37 11.78 17.95

Salman2020Do R50 8.48 8.48 8.35 5.78 6.43 8.48 9.64 12.36 10.35

Wong2020Fast 10.38 10.38 10.54 8.15 8.15 10.7 11.98 12.12 12.02

2 Engstrom2019Robustness 23.77 24.03 23.26 15.50 19.51 24.55 26.74 27.31 28.41

Salman2020Do R18 25.36 25.52 24.88 18.54 22.19 25.67 29.79 30.35 31.52

Salman2020Do R50 18.12 18.12 17.74 12.21 14.91 18.25 20.69 26.92 21.61

Wong2020Fast 20.61 20.45 21.41 15.81 17.41 22.36 25.24 28.08 27.45

4 Engstrom2019Robustness 46.64 48.84 40.44 31.52 40.70 50.78 54.39 49.03 55.30

Salman2020Do R18 46.91 46.59 43.74 36.29 43.42 47.23 53.25 47.94 52.53

Salman2020Do R50 40.62 41.00 37.40 27.76 35.60 41.90 45.89 46.64 48.42

Wong2020Fast 45.85 47.12 44.09 38.02 41.85 48.72 50.16 40.62 41.50

Table 6. The detect results of AFLOW and the baselines.

Datasets Methods AUROC (%) ↑ Detection Acc. (%) ↑
FGSM BIM AdvFlow AFLOW FGSM BIM AdvFlow AFLOW

CIFAR-10 LID 99.67 96.54 59.59 52.06 99.73 90.42 55.63 58.76

Mahalanobis 96.54 99.6 66.87 58.43 90.42 97.26 65.31 64.09

Res-Flow 94.47 97.15 65.63 63.25 88.56 91.54 63.36 59.62

SVHN LID 97.86 90.55 62.57 62.13 93.34 82.6 59.21 57.65

Mahalanobis 99.61 97.14 64.84 65.36 98.62 92.49 61.57 62.56

Res-Flow 99.07 99.42 65.68 64.98 95.92 96.99 63.73 62.69

4.4 Detectability

Adversarial examples can be regarded as the data out of the distribution of the
clean data, therefore we could check whether every example is adversarial or
not. Thus, generating adversarial examples with high concealment means that
they have the same or a similar distribution as the original data [9,27]. To ver-
ify the crafted examples meet this rule, following the literature [9] and choose
LID [27] , Mahalanobis [20], and Res-Flow [46] adversarial attack detectors to
evaluate the performance of the AFLOW. For comparison, we choose FGSM
[13], BIM [19], and AdvFlow [9] as the baseline methods. The detection results
are shown in Table 6, including the area under the receiver operating charac-
teristic curve (AUROC) and the detection accuracy. From Table 6, we can find
that these adversarial detectors find it hard to detect the evil examples built
by AFLOW in contrast to the baselines in most cases. The empirical results
precisely demonstrate the superiority of our method, which generates adversar-
ial examples closer to the original clean images’ distribution than other meth-
ods, and the optimized adversarial perturbations have better hiding ability. The
classifier is ResNet-34 and the code used in this experiment is modified from
deep Mahalanobis detector6 and Residual-Flow7, respectively.

6 https://github.com/pokaxpoka/deep Mahalanobis detector.
7 https://github.com/EvZissel/Residual-Flow.

https://github.com/pokaxpoka/deep_Mahalanobis_detector
https://github.com/EvZissel/Residual-Flow
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Table 7. Various perceptual distances were calculated on fooled examples by
BIM, PGD, MI-FGSM, TI-FGSM, DI2-FGSM, APGD, Jitter, stAdv, Chroma-Shift,
AdvFlow and the proposed AFLOW on NIPS2017.

Metrics BIM PGD MI-FGSM TI-FGSM DI-FGSM APGD Jitter stAdv Chroma-Shift AdvFlow AFLOW

SSIM ↑ 0.9496 0.8905 0.9446 0.9193 0.9186 0.8727 0.9094 0.9565 0.9760 0.9863 0.9952

PSNR ↑ 36.6813 33.1693 36.2556 33.5426 34.6539 32.6917 33.5590 31.0612 35.1582 34.1804 36.7962

UQI ↑ 0.9821 0.9768 0.9837 0.9653 0.9839 0.9812 0.9828 11.9378 7.6892 7.8021 0.9844

SCC ↑ 0.7277 0.6085 0.7068 0.8145 0.6798 0.5919 0.6423 0.7109 0.8496 0.9041 0.9611

VIFP ↑ 0.6516 0.5393 0.6522 0.5551 0.5838 0.5172 0.5897 0.5614 0.7297 0.8027 0.8649

L2 ↓ 56.8518 84.3255 59.7074 81.5976 71.7985 89.9959 81.4444 0.9976 0.9970 0.9831 56.4112

LPIPS ↓ 0.1490 0.2133 0.1580 0.1646 0.1993 0.2391 0.1962 0.1338 0.0203 0.0226 0.0101

DISTS ↓ 0.1022 0.1383 0.1054 0.1391 0.1398 0.1545 0.1272 0.1360 0.0246 0.0263 0.0204

4.5 Evaluation of Image Similarity

In this paper, we follow the work in [1] using the following perceptual metrics
to evaluate the adversarial examples generated by our method: Learned Percep-
tual Image Patch Similarity (LPIPS) metric [44], and Deep Image Structure and
Texture Similarity (DISTS) index [8]. LPIPS is a technique that measures the
Euclidean distance of deep representations (i.e., VGG network [34]) calibrated
by human perception. Moreover, we also use the Structure Similarity Index Mea-
sure (SSIM) [38] to assess the generated images’ qualities concerning luminance,
contrast, and structure. Next, we calculate the Average L2 norm. Finally, we use
other metrics like Universal Image Quality Index (UQI) [37]. Spatial Correlation
Coefficient (SCC) [23], and Pixel Based Visual Information Fidelity (VIFP) [33]
to assess the adversarial examples’ image quality. The main toolkits we used in
the experiments of this part are IQA pytorch8 and sewar9.

The generated images’ quality results can be seen in Table 7, which indicated
that the proposed method has the lowest LPIPS, and DISTS perceptual loss
(the lower is better), are 0.0101 and 0.0204, respectively, and has the highest
SSIM, PSNR, UQI, SCC and VIFP (the higher is better), achieving 0.9952,
36.7962, 0.9844, 0.9611, and 0.8649, respectively, in comparison to the baselines
on NIPS2017 dataset. The results show that the proposed method is superior to
the existing attack methods.

In addition, we draw the gray histogram of the adversarial example generated
by BIM, PGD, and our method in Fig. 3 to show the modification of the original
image. The horizontal axis represents the pixel’s value, and the vertical axis
represents the number of pixels corresponding to each pixel value. From Fig. 3,
we can see that the adversarial examples generated by AFLOW are more similar
to the original image, and the distribution of the number of pixel values is
almost the same as the original image. While the baseline methods BIM and
PGD change the original image a lot, resulting in a significant difference in the
distribution of the number of pixel values.

To better observe the difference between the adversarial examples gener-
ated by our method and the baselines from the visual aspect, we also draw the

8 https://www.cnpython.com/pypi/iqa-pytorch.
9 https://github.com/andrewekhalel/sewar.

https://www.cnpython.com/pypi/iqa-pytorch
https://github.com/andrewekhalel/sewar
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Fig. 3. The gray histogram comparison among baselines and our method between clean
example and adversarial example, with the red line represent the benign example and
the blue line indicate the corresponding adversarial one. (Color figure online)

Fig. 4. Adversarial examples and their corresponding perturbations. The first column
is the benign examples, and the followings are the adversarial noise of PGD, MI-FGSM,
TI-FGSM, DI2-FGSM, Jitter, stAdv, Chroma-shift, and our method, respectively.

adversarial perturbation generated on NIPS2107 by baselines and the proposed
method in Fig. 4, the target model is pre-trained ResNet-152. The first column
is the benign examples, and the following are the adversarial noise of PGD,
MI-FGSM, TI-FGSM, DI2-FGSM, Jitter, stAdv, Chroma-shift and our method,
respectively. Noted that, for better observation, we magnified the noise by a
factor of 10. From Fig. 4, we can clearly observe that baseline methods distort
the image without ordering. In contrast, the adversarial examples generated by
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our method are focused on the target object, and its noise contains more seman-
tic information, and they are similar to the original clean image and are more
imperceptible to human eyes.

5 Conclusions

In this paper, we present a novel study on the adversarial attack in a rigor-
ous noise-limited scenario, explicitly focusing on the CV task. To ensure the
perturbation is unnoticeable, we generate adversarial examples by directly dis-
turbing the images’ hidden representation rather than noise-adding. The pro-
posed method, called AFLOW, based on Normalize Flow model, has succeeded
in improving attack ability and enhancing the imperceptibility of the generated
adversarial noise. Extensive experimental results show the proposed AFLOW
can generate adversarial examples with high attack ability, admirable invisibil-
ity, and excellent image quality. This work may be a starting point for future
research on sufficiently evaluating the existing DNNs’ vulnerability. Where sev-
eral issues could be further investigated, including further helping consolidate
the existing DNNs and designing new robust DNN models.
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